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Abstract:
This paper presents two new rational approximations for Bateman’s G-function, derived using Pad’e
approximation techniques. The proposed functions,

fis(0) = ——2—and foo(x) = ——

2(1+%7_, bix~2Y) 2(1+372, byx 2’

upper bounds forG(x) — x~*over the domains x > 1land x > % respectively, where b, = % and

) i-1 .
22i+2 _ 1B, . — (22i-25+2)p. .
bi =2 (( ) 20+2 + ( ) 2i+2s+2 bs ) i>1

are rigorously proven to serve as sharp lower and

i+1 i—-s+1

s=1
Through careful mathematical analysis, we demonstrate that these bounds converge uniformly to
G(x) — x~tand exhibit favorable analytic properties. Our results significantly improve the approximation
framework for Bateman’s G —function, enhancing its applicability in theoretical physics and special
function theory. Future studies should explore extensions to complex domains and higher-order
approximations.
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Introduction:

Bateman’s G —function is a special function introduced by the mathematician Harry Bateman [1, 2]
and it is used in the context of mathematical physics, applied mathematics, and engineering. It appears
in heat conduction, wave propagation, and other physical scenarios where differential equations are
solved using integral transforms. The general definitions are as follows:
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G(x)=2[0 T —dv, x>0 D
And:
1 ¢x-1
G(x)sz0 1+tdt' x>0 (2)

Bateman’s G-function is a generalization and can often be used to represent other special functions
like the diamma function and is defined by:

1+x X
G(x)=1p< . )—w(z) x€R—-{0~1,-2..}. (3)
The function G(x) satisfies:
2
GE) +Ga+1)=—. (4
In [3], Mahmoud and Agarwal presented the asymptotic formula:
(2211— - 1)BZn
G(x)~—+z e (5)
nx

wherethe B, ,n = 0,1, 2 .. are the Bernoulli numbers.
Recently in 2022 [4], Mahmoud, Talat, and Ahfaf introduced the following approximation family:
-2
X

() 2n = — 6
f 2n 2(1 +Z‘{L=1 bjx 21) ( )
where q1 = %, and:
) j-1 .
_ (2¥*2 = 1)Byj42 + (2¥972¥*2 — 1By 1 20+2 s
4 j+1 ; j—v+1 @) J=%
b

by use padthey derived eight approximations from this formula (1.6).

In this paper, we will introduce two new approximations from this formula and prove that they
represent the upper and lower bounds for Bateman’s ¢ —function The calculations and graphs were
performed in Wolfram Mathematica.

Preliminaries:

this section we computed new t approximations for G(x) — % these approximations were derived
using Pad’e approximation. Let f(x) be the formal power series:
fx) = cg+cx + cx2 + -
The Pad’e approximant of order (p,q) of f(x) is the rational function—22 ( , Where L(x),M(x) are
polynomials of degreesp > 0and g > 1, and they denoted by:
L(x) b oaxt

[p/qlf () = M) 1+Z- b Q)

where b1 = § , and:

k=1
b = 2 (2242 — 1)Byiy, (2%K725%2 — 1)Byjras42 b > 1
k+1 n k—s+1 s '

p

To obtain the Pad’e approximants of order (2,18) and (2,20) of the functionf(x)andwhich
wedenotedbyf s ,f2orespectively:

fig(x) =

X2
u(x)

Faol® = s ©)

®)

Where:

10
u(x) = 2(1+be 2 ,v(x) = 2(1+Zbix‘2i
i=1

Using Wolfram Mathematica Software We obtain:

b — 3 27 423 9927 324423 _ 14098527
27 4 3T g AT 16 5T 32 6T 64 7T 28
787622823 ) _ 55075738527 P 4716648068823
- 256 0T 512 ana Bro = 1024

Then, we have:
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Cgqale 3 2T L 423 9927 . 324423, 14098527 _,,
u@E) = 2045 a7 — g X 16 32 * 64 128
787622823, 55075738527
256 512 x).
And:
1 3 27 423 9927 324423 14098527
v(x) = 2(1+ 3 xP——xt+— x6— T B x10 = x~1? 128 x~t
787622823 55075738527 4716648068823
- x 7 x718 _ x
256 512 1024

Results and Discussion:
In this section, we deduce two bonds for G(x).To prove the next theorems we need the following

auxiliary lemma

Lemma3.1. If the function g(x)defined forx > 0, limy - 0 g(x) = Oand g(x + 6) < g(x),§ >
0,then g(x) > 0 forx > 0[7].

Theorem
1

3.2 The function f,g(x) is lower bound of G(x) —

x~" ,where the lower bound holds forx > 1.
Proof.Let L(x) = G(x) — % — f1g(x). Then, by using Relation (3.4), we have

Where:

—18K (x)

L(x +2) — L(x) = — H(x)

K(x) = 1475786773533952x'¢ + 23612588376543232x'° + 201782758525316096x*

And:
H(x) = 262144x3°
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+ 1172077432996399104x' + 5065583614598565312x12

+ 17028941197493503232x + 45607551937599249984x°
+ 98547862565421190272x° + 172661287706241082192x8

+ 245034656119120158336x7 + 279737640076416319584x°
+ 253417028091835604800x° + 178704623305466581932x*
+96076527002014840752x3% + 22232258848343214892x2

— 21687379028998654728x + 304076448378421989297

+10223616x38 + 189530112x%7 + 2221146112x3¢ + 18459328512x35
115678445568x3* + 567400071168x33 + 2231772905472x32
7154055266304x3' + 18889372844032x30 + 41349261312000x2°
75274167238656x2% + 113960881205248x%7 + 143031107358720x2°
147858652053504x25 + 124764823019520x%* + 83665791538176x%3
39341268077568x%% + 61679983959040x%* + 43629682725888x2°
129941579181312x° + 53102469644330752x'® + 850064300997932544x7
7290733411363335168x° + 42619941990800174016x°
185953462404684148800x* + 633499832351415897792x'3
1727780892184292883264x% + 3825502731787915997136x*
6923092782952037084400x'° + 10254514580620226229888x°
12387993166777199167584x% + 12105584241812549190540x7
9453120992790112533204x° + 5664914613779794830900x°
2028714909347166450876x* + 2530981074537218075769x3
7817843248572163924251x2

5473376070811595807346x > 0,x>0.

K(x+1) = 1475786773533952x¢ + 47225176753086464x'° + 733065996997538816x*

Furthermore,
L ,Vx > 1.
X

Theorem 3.3.

+ 7302798425066876928x13 + 52094480908514481600x?

+ 281364328210388290048x1 + 1187179814171563865280x1°

+ 3982711995689176207104x° + 10714528736896043449936x8

+ 23151080369744031270144x7 + 39980310348387706912800x°

+ 54525837164479104739712x° + 57500925563993109137580x*

+ 45280426797439363521888x3 + 25076592156992722792804x2

+ 8677420493971771169424x + 1697901978380645438241 > 0,x > 0

lim, - oo L(x) = 0,and hence,L(x) > 0,V x > 0,which gives f(x);g < G(x) —
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1

The function f,¢(x) is upper bound of G(x) — x~*,where the upper bound holds for x > 3

1
Proof.Let N(x) = G(x) — P f20(x).Then, by using Relation (3.4), we have

185(x)
x(x+ D(x +2)T(x)W (x)

N(x+2)—N(x) =

Where:
S(x) = 331639705331116032x '8 + 5969514695960088576x 17
+ 57761922373616764672x 1° + 382954758877486870528x 15
+ 1906508520530498879488x 1* + 7461590153408242475008x 13
+ 23558087208296313772096x 2 + 60908335172258274550528x 1!
+ 130010227082052344163776x 1° + 229829364573435867372416x °
+336118213872609075073712x 8 + 404560336274014057927040x 7
+396938941012996452691616x° + 312874667742612430658240x °
+ 190645738222302664492820x 4 + 78355737923484188154704x 3
+111275637963533338874132x 2 + 193468833170630945607048x
— 2263536052771366800957057,
T(x) = 1024x2° + 512x18 — 768x1% + 3456x'* —27072x'? + 317664x'° — 5190768x8
+ 112788216x° —3150491292x* + 110151477054x% — 4716648068823
And:
W (x) where, = 1024x%° + 40960x*° + 778752x'® + 9357312x'7 4+ 79693056x'® + 511352832x15
+ 2564877696x* + 10297735680x1% + 33609451584x'2 + 90047096320x*
+ 199121068768x° + 364038605184x° + 549269718288x% + 680210383104x”
+ 684573380088x° + 551682109344x° + 347270826372x* + 151121810976x3
+ 110051647774x? + 369030382456x — 4319131760031
Where:
S(x +1) = 1475786773533952x16 + 47225176753086464x5 + 733065996997538816x*
+ 7302798425066876928x3 + 52094480908514481600x1?
+ 281364328210388290048x* + 1187179814171563865280x1°
+3982711995689176207104x° + 10714528736896043449936x8
+ 23151080369744031270144x” + 39980310348387706912800x°
+ 54525837164479104739712x5 + 57500925563993109137580x*
+45280426797439363521888x3 + 25076592156992722792804x?
+ 8677420493971771169424x + 1697901978380645438241
> 0,x >0,

3
T (x + 5) = 1024x2° + 71680x'° + 2383872x8 + 50082816x7 + 745460928x'° + 8356293120x1°

+ 73195184256x'* + 513014194560x13 + 2922034290312x'2 + 13658708280784x11

883743342737727x8
+ 52682701394824x1° + 167964753961872x° + >

3347227244178507x°  4698556147679289x°5
+953960195115522x7 + > + >

+ 164909226173175501x4+ 68102419430857035x3 + 39848128424155511x2
32

64 32
+ 29483124000493975x  78953240062810047

64 + 1024 >0, x>0

And:
W(x +1) = 331639705331116032x'® + 11939029391920177152x'7

+209984547120599023360x° + 2389617515056117833728x1>
+ 19656348080092888987648x1* + 123758569623858749382656x13
+ 616518065008485767900224x'? + 2479048653766145644176896x'!
+ 8140443109960163701040960x'° + 21953264458350291755114752x°
+ 48661823406654418689044912x8 + 88325331532390279573191424x7
+130143924131131216816618208x° + 153393623081234503888067200x°
+ 141305175527039629436784404x* + 98069149163377190832955552x3
+ 48312735240008685504847196x2% + 15332268365510617343996016x
+ 214823183956450288575375 > 0,x > 0,

Furthermore, lim,, » o N(x) = 0,and hence,N(x) > 0,V x > % which gives f(x),0 > G(x) —
%,Vx > 1
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e Figure 2 Comparisons between the two approximations
Figure I: Caption ¥

The following inequality holds:

1
fis(x) < G(x) — X < f20(%),
where the lower bound and the upper bound hold for x > 1 and x > 3 2, respectively.
Conclusion:
In this study, we presented new bounds for Bateman’s G —function derived from asymptotic form
"~—1)Byn

ERE

shedding light on the behavior of new tow functions of the family functions f(x),, =

, x—-o by using The Pad’e approximant. This study contributes to

nx2n ,
X

2(1+3  bjx =2 We

expect that our results will help in utilizing and clarifying this information to study concepts related to

pointwise or uniform convergence of sequences of functions for the Bateman’s G —function.

Author Contributions:

All the authors read and approved the final version of the paper

Conflicts of Interest:

All the authors declare no conflict of interest.

References:

[1] H. Bateman, A. Erd’elyi, Higher transcendental functions, Mc Graw-Hill, 1953.

[2] K. B. Oldham, J. Myland, J. Spanier, An atlas of functions, Springer, 2009.

[3] M. Mahmoud, R. P. Agarwal. Bounds for bateman’s g-function and its applications. Georgian

Mathematical Journal, 23(4):579-586, 2016.

[4] O. Ahfaf, M. Mahmoud, A. Talat, Some rational approximations and bounds for bateman’s G-

function. Symmetry, 14(5):929, 2022.

[5] L. Copley, Mathematics for the physical sciences, Walter de Gruyter GmbH & Co KG, 2015.

[6] X. Li, C. P. Chen, Chao-Ping, Pad e approximant related to asymptotics for the gamma function,

Journal of Inequalities and Applications, 2017, 2017,53.

[7] Qi, Feng, Guo, Senlin, Guo, Bai-Ni, Complete monotonicity of some functions involving polygamma

functions, Journal of Computational and Applied Mathematics,233,9,20107,2149-2160.

48 | North African Journal of Scientific Publishing (NAJSP)



