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Abstract:

Image classification is a fundamental task in computer vision, enabling applications such as medical
diagnosis, autonomous driving, and facial recognition. Convolutional Neural Networks (CNNs) have
driven major progress in this domain, with ResNet and Efficient Net emerging as two of the most
influential architectures. ResNet introduced residual connections to overcome the degradation problem
in very deep networks, while EfficientNet proposed a compound scaling strategy to jointly optimize
network depth, width, and resolution. This paper presents an analytical comparison between ResNet
and EfficientNet for image -classification, focusing on key performance indicators, including
classification accuracy, computational complexity, training efficiency, inference speed, and scalability.
By synthesizing results from benchmark datasets and prior studies, the analysis highlights the trade-
offs between robustness and efficiency. The findings show that ResNet remains a strong baseline with
stable performance across various image classification tasks, whereas Efficient Net achieves higher
accuracy-to-computation ratios, making it particularly effective in resource-constrained environments.
The paper concludes with insights into the practical implications of choosing between these models for
real-world image classification applications.
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Introduction

Image classification is a cornerstone of modern computer vision, underpinning high-impact
applications in medical imaging, autonomous navigation, remote sensing, retail analytics, and facial
recognition, among others [1-3]. The remarkable gains of the last decade were catalyzed by
Convolutional Neural Networks (CNNs) trained at scale, particularly on ImageNet, which transformed
both accuracy and methodology by enabling end-to-end feature learning and hierarchical
representation of visual patterns [4]. Beyond raw accuracy, CNNs reshaped how models are designed
and tuned, emphasizing depth, receptive-field control, and training “recipes” (data augmentation,
regularization, and optimization schedules) that collectively determine real-world performance. Within
this trajectory, two architecture families have become especially influential for image classification:
ResNet and EfficientNet. ResNet introduced residual learning via identity shortcut connections, which
mitigates vanishing gradients and allows effective optimization of very deep networks [5].

Residual connections make it possible to stack dozens or even hundreds of layers without
catastrophic degradation, and they have since become a default design primitive in vision models. As
a result, ResNets (e.g., 18/34/50/101/152) have served as strong baselines and retraining backbones
across detection, segmentation, and retrieval tasks, establishing a durable reputation for stability,
transferability, and robust convergence. Complementing depth-centric design, EfficientNet proposed a
compound scaling strategy that jointly and systematically balances depth, width, and input resolution
under a fixed compute budget, rather than scaling any single dimension in isolation [6].

This principled scaling, instantiated in variants BO—B7 (and later lightweight/mobile extensions),
achieved state-of-the-art accuracy-vs-efficiency trade-offs at the time of introduction by marrying
architecture search—informed micro-design with macro-level compound scaling. In practical
deployments especially on edge and cloud environments with tight latency, memory, or energy
constraints EfficientNet’'s accuracy per FLOP and per parameter made it a compelling alternative to
“deeper-is-better” scaling alone [7].

Despite their widespread adoption, a rigorous, apples-to-apples analytical comparison between
ResNet and EfficientNet remains underexplored across several practically decisive axe: (i) Top-1/Top-
5 accuracy under matched training recipes; (ii) computational complexity (FLOPS), parameter counts,
and activation memory; (iii) throughput and latency on heterogeneous hardware (general-purpose
CPUs, GPUs of different generations, and edge accelerators); (iv) training efficiency (time/epoch to
target accuracy, optimizer sensitivity, convergence stability); (v) scalability under different compute
budgets; and (vi) downstream transfer (fine-tuning on smaller or domain-specific datasets), robustness
(to common corruptions and distribution shift), and calibration (confidence reliability) all of which matter
for real deployments as much as headline accuracy [8-10].

A well-controlled study is timely for two reasons. First, accuracy gaps reported in the literature often
conflate architectural differences with training recipes (e.g., label smoothing, MixUp/CutMix,
RandAug/AutoAug policies, EMA, stochastic depth, and cosine/LR warm-up schedules). Because these
choices strongly condition outcomes, a fair comparison must equalize the recipe as far as possible and
report sensitivity. Second, the “best” model depends on contextual constraints: batch-size ceilings due
to memory, inference precision (FP32 vs mixed-precision), kernel availability and library optimizations,
and the cost of accuracy measured in watts, dollars, and milliseconds. Consequently, the optimal choice
may vary between a hospital PACS system, an embedded camera, and a cloud API, even for the same
nominal accuracy.

Our contributions are threefold. (1) We present a controlled, recipe-matched evaluation of
representative ResNet and EfficientNet variants, reporting accuracy, FLOPS, prams, activation memory,
and end-to-end latency/throughput under identical software stacks and precision settings. (2) We
augment accuracy with deployment-centric metrics: batch-size ceilings, memory pressure, energy-per-
inference, and cost-to-target-accuracy, offering a decision-oriented view that better matches practitioner
needs. (3) We analyze scaling behaviors (depth/width/resolution), transfer learning, and
robustness/calibration, highlighting conditions under which each family is preferable. Taken together,
our study aims to provide practical guidance for selecting between Reset and EfficientNet in real-world
image classification, where trade-offs between robustness and efficiency are decisive. Finally, while our
focus is on CNNs, we situate findings within the broader ecosystem: training recipes can narrow or
widen gaps between architecture families; compression techniques (pruning, quantization, knowledge
distillation) can shift the efficiency frontier; and deployment constraints (kernel fusion, operator
availability) can favor one family over another. By making code, logs, and configurations available, we
also emphasize reproducibility, enabling the community to replicate and extend our results under
evolving hardware and software environments.
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Image Classification

Image classification represents a cornerstone problem in computer vision, where the objective is to
map input images into predefined semantic categories. Its significance is reflected in diverse application
areas, including healthcare (e.g., automated diagnosis from radiological scans), security (e.g., face
verification and surveillance), and transportation (e.g., autonomous driving systems). Figure 1 presents
the Image Classification.
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Figure 1: Image Classification.
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As a fundamental building block, advancements in image classification have had cascading effects
on downstream tasks, such as object detection, semantic segmentation, and scene understanding [5].
The field initially relied on hand-engineered feature descriptors, such as Scale-Invariant Feature
Transform (SIFT) and Histogram of Oriented Gradients (HOG), which extracted low- and mid-level
features from images. Although these approaches achieved success in smaller datasets, they suffered
from scalability limitations, particularly with high intra-class variability and large-scale benchmarks. The
introduction of AlexNet [3] in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012
marked a paradigm shift by leveraging deep convolutional neural networks (CNNs) trained on GPUs.

AlexNet demonstrated that hierarchical feature representations could be learned directly from raw
pixels, outperforming traditional feature engineering methods by a large margin. Subsequent
architectures, such as VGGNet [8], emphasized depth and simplicity with uniform convolutional layers,
while Inception Szegedy et al [9] introduced parallel multi-scale feature extraction to improve
computational efficiency. These innovations paved the way for even deeper networks, but they also
highlighted challenges, such as vanishing gradients, over fitting, and resource-intensive computations.
Against this backdrop, ResNet and later EfficientNet emerged as landmark contributions, each
addressing critical limitations of previous models while shaping the trajectory of modern image
classification. Table shows comparison between ResNet and EfficientNet for Image Classification.

Table 1: Comparison between ResNet and EfficientNet for Image Classification.

Dimension

ResNet

EfficientNet

Core idea

Residual connections mitigate vanishing
gradients and enable very deep CNNs.

Compound scaling jointly balances depth,
width, and input resolution for optimal
efficiency.

Typical variants
(examples)

ResNet-18/34 (shallower), ResNet-
50/101/152 (deeper, stronger baselines).

EfficientNet-BO (mobile-friendly) up to
B7/L2 (progressively larger & more
accurate).

Classification
accuracy
(benchmarks,
general trend)

Strong, stable baselines across many
datasets; improvements plateau with
depth increases.

State-of-the-art accuracy per unit
compute; scales accuracy efficiently with
model size.

Accuracy-to-
compute ratio

Good, but less favorable at very deep
scales compared to newer families.

Excellent; designed to maximize accuracy
per FLOP/parameter.

Computational
complexity

Increases notably with depth (e.g.,
50—-101—-152 layers).

Tunable via compound scaling to meet
specific compute budgets.

Training efficiency

Mature, widely supported; straightforward
optimization with residual blocks.

Efficient but can require careful scaling
choices; often reaches target accuracy
faster per compute.

Inference speed (on
common hardware)

Fast on servers/GPUs; can be heavier on
edge devices at higher depths.

Generally faster at comparable accuracy
on edge/mobile due to better efficiency.

Memory footprint

Moderate to large depending on depth;

deeper variants can be memory-intensive.

Typically, smaller for a given accuracy
target; scales memory with need.
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Scalability

Scales by adding depth; diminishing
returns beyond certain depths.

Scales systematically in depth/width/
resolution with predictable gains.

Robustness &
generalization

Proven robustness and transferability
across tasks/datasets; widely used
baseline.

Competitive robustness; benefits from
balanced scaling and modern training
recipes.

Implementation

Extremely mature: abundant code,

Well supported and actively used; slightly

depth; diminishing returns at extreme
depths.

ecosystem pretrained weights, and tutorials across fewer resources but ample in practice.
frameworks.
Deployment Data centers, research baselines, tasks Resource-constrained or latency-
scenarios needing stable, well-understood behavior. | sensitive apps (mobile/embedded) and
cost-focused deployments.
Strengths Simplicity, stability, interpretability of Superior efficiency (accuracy per
residual design; ubiquitous support. FLOP/param); flexible scaling to
hardware limits.
Limitations Compute and memory rise quickly with Choosing the right scale (BO-B7/XL)

adds a design step; very large variants
can still be heavy.

Practical selection
guideline

Prefer when you need a reliable, standard
baseline and broad community support.

Prefer when you need best accuracy
under strict compute/latency or cost

constraints.

The comparative analysis between ResNet and EfficientNet reveals that both architectures have
made substantial contributions to the advancement of image classification in deep learning. ResNet
remains a robust and dependable choice due to its simple residual connection design, stability during
training, and widespread availability of pretrained models. Its maturity and extensive community support
make it ideal for standard research applications and large-scale tasks that prioritize reliability and
interpretability. In contrast, EfficientNet introduces a paradigm shift through its compound scaling
approach, achieving superior accuracy-to-computation ratios by systematically balancing depth, width,
and input resolution. It delivers exceptional performance efficiency, particularly suited to resource-
constrained or real-time environments, such as mobile and embedded systems. While ResNet provides
consistent robustness, EfficientNet stands out for its scalability, optimized architecture, and adaptability
to modern hardware constraints. Overall, the choice between the two depends on deployment context:
ResNet serves as the benchmark model for consistency and transfer learning, whereas EfficientNet
excels when maximizing performance per computational cost is critical. Both architectures, however,
continue to influence next-generation CNN design principles and remain foundational in computer vision
research and applications.

ResNet (Residual Networks)

The Residual Network (ResNet), proposed by [1], tackled the vanishing gradient problem through
the introduction of residual connections that allow gradients to bypass multiple layers, as shown in
Figure 2. This architectural innovation enabled the successful training of networks exceeding 100
layers, demonstrating record-breaking performance in the ILSVRC 2015 competition [7]. The residual
block’s identity mapping facilitates stable optimization, making deeper models not only feasible but also
practically useful. ResNet variants, such as ResNet-50, ResNet-101, and ResNet-152, leverage
bottleneck blocks, which reduce computational cost while preserving representational capacity. These
designs have made ResNet one of the most widely used backbones in transfer learning scenarios,
powering state-of-the-art results in detection [6], segmentation, and even natural language processing
tasks when adapted to vision-language models.

The strong generalization capacity of ResNet contributed to its long-standing dominance in
academic benchmarks and industrial pipelines. However, the advantages of ResNet come with trade-
offs. Increasing depth substantially improves representational power but at the cost of higher training
complexity and computational demand. Models like ResNet-152, while accurate, require significant
GPU memory and computational time, which makes them less practical for resource-limited settings
[5]. Moreover, performance gains diminish as depth increases, suggesting a limit to brute-force scaling.
Compared to more recent designs, ResNet is also less parameter-efficient; achieving similar accuracy
to modern models often requires more parameters and floating-point operations [10].
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Figure 2. Residual Network (ResNet).

EfficientNet

EfficientNet, introduced by [10], departed from conventional ad hoc scaling approaches by
formalizing a compound scaling method. Instead of arbitrarily increasing depth, width, or input resolution
in isolation, EfficientNet scales these three dimensions simultaneously using fixed coefficients derived
from grid search. This methodology ensures balanced growth, avoiding inefficiencies associated with
unidimensional scaling. The EfficientNet family (BO—B7) demonstrated remarkable results on ImageNet,
achieving superior accuracy with significantly fewer parameters compared to networks like ResNet-152
or Inception-v4. EfficientNet's design incorporates mobile inverted bottleneck convolution (MBConv)
and squeeze-and-excitation modules making it both powerful and efficient. In practical applications,
EfficientNet models are highly versatile. Smaller versions (e.g., BO and B1) are lightweight and suitable
for mobile deployment, while larger ones (B6 and B7) achieve state-of-the-art accuracy on high-end
systems. Nevertheless, this flexibility comes with limitations. Larger EfficientNet models demand
extensive computational resources and often require advanced training strategies, such as
AutoAugment, mixup, and stochastic depth, to achieve their reported accuracy.
Relevance of ResNet and EfficientNet

ResNet and EfficientNet represent two pivotal yet distinct philosophies in CNN design. ResNet
emphasizes depth and residual learning to push representational limits, while EfficientNet focuses on
balancing accuracy and efficiency through principled scaling. A comparative analysis of these
architectures is therefore essential to understand their trade-offs in accuracy, computational cost,
parameter efficiency, and deployment feasibility. Such a comparison not only provides insights into
architectural choices for specific applications but also informs the design of next-generation models that
combine the strengths of both paradigms.
Evaluation Criteria in Image Classification

In image classification tasks, assessing model performance requires multiple complementary
metrics to capture both accuracy and efficiency as illustrated in Figure 3. Top-1 accuracy measures the
proportion of correctly classified images, providing a direct indicator of the model’s predictive capability
on benchmark datasets, such as ImageNet and CIFAR-100[5]. Number of parameters reflects the
model’'s complexity and storage requirements; models with fewer parameters achieving comparable
accuracy are considered more efficient [7]. Floating-point operations (FLOPS) indicate the
computational demand per forward pass, crucial for understanding processing costs, especially for real-
time applications. Inference speed measures how fast a model can classify new images, a key factor
for deployment in latency-sensitive environments. Finally, model size determines memory consumption
and feasibility for devices with limited resources, such as mobile or embedded systems. Collectively,
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these metrics allow a balanced evaluation of accuracy, computational efficiency, and resource
utilization in image classification tasks.

Model

Evaluation

1
Top-1 Accuracy [ Efficiency & Resources]

Direct predictive capability

Parameters FLOPs ln!erence Model
Size

Model Computational
complexity demand Latlt;ncy Memory
&storage  (per forward

pass) real-time dewce

deployment feasibility

Figure 3: Evaluation Criteria in Image Classification.

ResNet Analysis

ResNet (Residual Network), fundamentally reshaped the development of deep learning
architectures by introducing skip or residual connections that effectively mitigated the vanishing gradient
problem and enabled the stable training of extremely deep neural networks, as illustrated in Figure 4.
Unlike traditional feed forward models, residual blocks allow gradients to bypass several layers through
identity mappings, ensuring smoother optimization and reducing degradation in performance as depth
increases [1]. On benchmark datasets such as ImageNet, ResNet demonstrated state-of-the-art
accuracy and scalability. For example, ResNet-50 achieves 76.3% Top-1 accuracy with approximately
25.6 million parameters and 4.1 billion floating-point operations (FLOPS), offering a balance between
accuracy and efficiency.

Strengths ResNet Analysis Limitations
» Residual Connections I » Heavy Parameters
- Stable Optimization . (25.6M - 44.6M)
« High Accuracy Variants « High FLOPs
(76.3%—77.6% Top-1 CesNet-50 (41B - 7.8B+)
on ImageNet) =
g N 76,3% Top-1acgenet « Slower Inference /
 Robust Transferability Large Memory Demand
; Detection, N Resf:let-101 » Diminishing Accuracy
egmentation, NLP 77,6% Top-1acgenet Gains with Depth
ResNet-152
4,1B FLOPs

\

Figure 4. ResNet Analysis.

Deeper variants, such as ResNet-101, increase accuracy slightly to 77.6%, but the parameter count
nearly doubles to 44.6 million, with a corresponding rise in computational cost and inference time. While
very deep networks like ResNet-152 provide marginal accuracy improvements, they highlight the
diminishing returns of brute-force scaling in terms of accuracy versus computational demand. Despite
these trade-offs, ResNets exhibit strong generalization capabilities, making them widely adopted as
backbone architectures in object detection, semantic segmentation, medical imaging, and transfer
learning tasks. Their ability to capture hierarchical feature representations across layers has contributed
significantly to their long-standing influence in both academic and industrial pipelines. However, the
advantages of ResNets come at the cost of increased resource requirements.

The large memory footprint, high inference latency, and computational overhead of deeper models
limit their practicality in resource-constrained environments, such as mobile or embedded systems.
Moreover, compared to more recent designs, including EfficientNet and Vision Transformers, ResNets
are relatively less parameter-efficient, often requiring more parameters and FLOPs to achieve similar
or lower accuracy. Consequently, while ResNet remains a landmark architecture that shaped modern
computer vision, its relative inefficiency underscores the growing importance of compact, efficient, and
scalable models in contemporary applications.
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EfficientNet Analysis

EfficientNet employs a compound scaling strategy, balancing network depth, width, and input
resolution to optimize both accuracy and efficiency [10]. The lightweight variant, EfficientNet-BO,
achieves 77.1% Top-1 accuracy with only 5.3 million parameters and 0.39 billion FLOPs, demonstrating
remarkable efficiency. EfficientNet-B4 attains 83.0% accuracy with 18.8 million parameters and 8.29
billion FLOPs, while the largest variant, B7, reaches 84.4% Top-1 accuracy at the cost of 66.9 million
parameters and 72.4 billion FLOPs. Compared to ResNet, EfficientNet models consistently provide a
better accuracy-to-efficiency trade-off, offering faster inference and smaller model sizes relative to
performance. This makes them particularly suitable for both high-accuracy tasks and deployment in
environments with limited computational resources.
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5.3 million, FLOPs
0,39 billion

-

EfficientNet | | eficientnet-B4
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Figure 5: EfficientNet Analysis.
Discussion

This study provides a comparative analysis of two landmark CNN architectures ResNet and
EfficientNet in the context of image classification. The comparison underscores how architectural
innovations directly influence not only accuracy but also computational efficiency, scalability, and
deployment feasibility. ResNet’s introduction of residual connections addressed the long-standing
problem of vanishing gradients, enabling the training of networks with unprecedented depth. This
innovation made ResNet a cornerstone model in computer vision, widely adopted as a backbone for
transfer learning in diverse downstream tasks such as detection, segmentation, and medical imaging.
The results discussed here reaffirm ResNet’s stability, robustness, and generalisation capacity, which
continue to make it a reliable benchmark model in both academic research and industrial applications.
However, the analysis also reveals the inherent limitations of ResNet: deeper variants increase
computational burden and memory usage disproportionately to the gains in accuracy.

This diminishing return effect highlights that depth alone is not a sufficient strategy for sustained
improvements in model performance. On the other hand, EfficientNet introduces a paradigm shift by
adopting compound scaling to balance network depth, width, and input resolution systematically. The
findings from benchmark datasets demonstrate that EfficientNet achieves superior accuracy-to-
computation ratios, achieving state-of-the-art accuracy with significantly fewer parameters and FLOPs
compared to ResNet. This efficiency makes EfficientNet particularly advantageous for real-time
applications and deployment on resource-constrained devices, such as mobile and embedded systems,
where computational overhead is a critical concern. At the same time, EfficientNet’s reliance on
compound scaling and architecture search raises questions about implementation complexity and
adaptability in domains where task-specific customisation is needed.

The broader implication of this analysis is that there is no one-size-fits-all model for image
classification. ResNet remains highly valuable where stability, interpretability, and transferability are
priorities, while EfficientNet is more suited for applications demanding optimized efficiency and high
accuracy under constrained computational budgets. The trade-offs identified suggest that model
selection should be guided by the specific requirements of the deployment context balancing factors
such as accuracy needs, hardware availability, latency constraints, and scalability. Moreover, these
insights also highlight directions for future research. Hybrid approaches that integrate the residual
learning principles of ResNet with the efficiency-driven scaling strategies of EfficientNet may offer new
opportunities for advancing image classification. Moreover, with the rise of Vision Transformers and
lightweight hybrid CNN-Transformer models, the efficiency-robustness trade-off observed between
ResNet and EfficientNet provides a valuable baseline for assessing the next generation of architectures.
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Conclusion

This study presented a detailed comparison between ResNet and EfficientNet architectures in image
classification tasks, considering accuracy, computational efficiency, and resource utilization. ResNet,
with its residual connections, remains a robust and reliable architecture for hierarchical feature
extraction, offering consistent performance across various datasets. However, its deeper variants
require more parameters and computational resources, leading to increased inference time and higher
memory usage. EfficientNet, through its compound scaling strategy, achieves a superior balance
between accuracy and efficiency. Smaller variants reach competitive accuracy with significantly fewer
parameters and lower computational cost, while larger variants attain state-of-the-art performance
without excessively compromising inference speed. Overall, the selection of an appropriate architecture
should be guided by the specific requirements of the application. EfficientNet is particularly suitable for
scenarios with limited computational resources or real-time constraints, while ResNet is advantageous
when deep feature representation and model stability are prioritized. This analysis highlights the
importance of considering both accuracy and efficiency in the design and deployment of image
classification models.

References

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
IEEE. https://doi.org/10.1109/CVPR.2016.90

[2] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 7132-7141). IEEE.
https://doi.org/10.1109/CVPR.2018.00745

[3] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097—
1105.

[4] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
https://doi.org/10.1038/nature14539

[5] Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A
comprehensive review. Neural Computation, 29(9), 2352-2449,
https://doi.org/10.1162/neco_a_00990

[6] Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time object detection
with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031

[7] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3), 211-252. https://doi.org/10.1007/s11263-015-0816-y

[8] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[9] Szegedy, C., Liu, W, Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015).
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 1-9). IEEE. https://doi.org/10.1109/CVPR.2015.7298594

[10]Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.

25 | The North African Journal of Scientific Publishing (NAJSP)



