
 

The North African Journal of 
Scientific Publishing (NAJSP) 

  (NAJSP) مجلة شمال إفريقيا للنشر العلمي
E-ISSN: 2959-4820 

Volume 3, Issue 4, 2025 
 Page No: 18-25 

Website: https://najsp.com/index.php/home/index 
  

SJIFactor 2024: 5.49 ( معامل التأثير العربيAIF )2024 :0.71 ISI 2024: 0.696 

 

18 | The North African Journal of Scientific Publishing (NAJSP)  

Comparison between ResNet and EfficientNet for Image 
Classification – An Analytical Study of Performance and 

Efficiency 
 

Najla Mohamed Salh Kailani* 

Computer Department, Faculty of Education, University of Zawiya, Zawiya, Libya 

 

تحليلية  دراسة-لتصنيف الصور  EfficientNetو ResNetمقارنة بين شبكتي 

 للأداء والكفاءة
 

  *نجلاء محمد صالح
ليبيا الزاوية، الزاوية، جامعة ،التربية كلية ،قسم الحاسوب  

 
*Corresponding author: njalhrm@gmail.com 

Received: July 28, 2025 Accepted: October 01, 2025 Published: October 08, 2025 

Abstract:  
Image classification is a fundamental task in computer vision, enabling applications such as medical 
diagnosis, autonomous driving, and facial recognition. Convolutional Neural Networks (CNNs) have 
driven major progress in this domain, with ResNet and Efficient Net emerging as two of the most 
influential architectures. ResNet introduced residual connections to overcome the degradation problem 
in very deep networks, while EfficientNet proposed a compound scaling strategy to jointly optimize 
network depth, width, and resolution. This paper presents an analytical comparison between ResNet 
and EfficientNet for image classification, focusing on key performance indicators, including 
classification accuracy, computational complexity, training efficiency, inference speed, and scalability. 
By synthesizing results from benchmark datasets and prior studies, the analysis highlights the trade-
offs between robustness and efficiency. The findings show that ResNet remains a strong baseline with 
stable performance across various image classification tasks, whereas Efficient Net achieves higher 
accuracy-to-computation ratios, making it particularly effective in resource-constrained environments. 
The paper concludes with insights into the practical implications of choosing between these models for 
real-world image classification applications. 
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 الملخص
يعُد تصنيف الصور مهمة أساسية في مجال الرؤية الحاسوبية، إذ يمُكّن من تطبيقات مثل التشخيص الطبي، والقيادة الذاتية، 

 ResNet( تقدمًا كبيرًا في هذا المجال، حيث برزت شبكتا CNNوالتعرف على الوجه. وقد حققت الشبكات العصبية )
اتصالاتٍ متبقية للتغلب على مشكلة التدهور في الشبكات  ResNetكأهمّ البنيات الأساسية. قدّمت  Efficient Netو

سع المركب لتحسين عمق الشبكة وعرضها ودقتها بشكل مُشترك. استراتيجيةً للتو EfficientNetبينما اقترحت  العميقة،
لتصنيف الصور، مع التركيز على مؤشرات الأداء  Efficient Netو ResNetتقُدّم هذه الورقة مُقارنةً تحليليةً بين 

وسع. من خلال الرئيسية، بما في ذلك دقة التصنيف، والتعقيد الحسابي، وكفاءة التدريب، وسرعة الاستدلال، وقابلية الت
تجميع النتائج من مجموعات بيانات معيارية ودراسات سابقة، يسُلطّ التحليل الضوء على التوازن بين المتانة والكفاءة. تظُهر 

 Efficient Netلا يزال يمُثل أساسًا قويًا بأداء مستقر في مختلف مهام تصنيف الصور، بينما يحُقق  ResNetالنتائج أن 
أعلى، مما يجعله فعالًا بشكل خاص في البيئات محدودة الموارد. وتخُتتم الورقة بتحليلات حول الآثار نسب دقة إلى حساب 

 العملية للاختيار بين هذين النموذجين لتطبيقات تصنيف الصور في العالم الحقيقي.

 .، الصورة، التصنيف، الأداءResNe ،EfficientNet الكلمات المفتاحية:

https://najsp.com/index.php/home/index
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Introduction 
     Image classification is a cornerstone of modern computer vision, underpinning high-impact 
applications in medical imaging, autonomous navigation, remote sensing, retail analytics, and facial 
recognition, among others [1-3]. The remarkable gains of the last decade were catalyzed by 
Convolutional Neural Networks (CNNs) trained at scale, particularly on ImageNet, which transformed 
both accuracy and methodology by enabling end-to-end feature learning and hierarchical 
representation of visual patterns [4]. Beyond raw accuracy, CNNs reshaped how models are designed 
and tuned, emphasizing depth, receptive-field control, and training “recipes” (data augmentation, 
regularization, and optimization schedules) that collectively determine real-world performance. Within 
this trajectory, two architecture families have become especially influential for image classification: 
ResNet and EfficientNet. ResNet introduced residual learning via identity shortcut connections, which 
mitigates vanishing gradients and allows effective optimization of very deep networks [5]. 
     Residual connections make it possible to stack dozens or even hundreds of layers without 
catastrophic degradation, and they have since become a default design primitive in vision models. As 
a result, ResNets (e.g., 18/34/50/101/152) have served as strong baselines and retraining backbones 
across detection, segmentation, and retrieval tasks, establishing a durable reputation for stability, 
transferability, and robust convergence. Complementing depth-centric design, EfficientNet proposed a 
compound scaling strategy that jointly and systematically balances depth, width, and input resolution 
under a fixed compute budget, rather than scaling any single dimension in isolation [6]. 
     This principled scaling, instantiated in variants B0–B7 (and later lightweight/mobile extensions), 
achieved state-of-the-art accuracy-vs-efficiency trade-offs at the time of introduction by marrying 
architecture search–informed micro-design with macro-level compound scaling. In practical 
deployments especially on edge and cloud environments with tight latency, memory, or energy 
constraints EfficientNet’s accuracy per FLOP and per parameter made it a compelling alternative to 
“deeper-is-better” scaling alone [7]. 
     Despite their widespread adoption, a rigorous, apples-to-apples analytical comparison between 
ResNet and EfficientNet remains underexplored across several practically decisive axe: (i) Top-1/Top-
5 accuracy under matched training recipes; (ii) computational complexity (FLOPs), parameter counts, 
and activation memory; (iii) throughput and latency on heterogeneous hardware (general-purpose 
CPUs, GPUs of different generations, and edge accelerators); (iv) training efficiency (time/epoch to 
target accuracy, optimizer sensitivity, convergence stability); (v) scalability under different compute 
budgets; and (vi) downstream transfer (fine-tuning on smaller or domain-specific datasets), robustness 
(to common corruptions and distribution shift), and calibration (confidence reliability) all of which matter 
for real deployments as much as headline accuracy [8-10].  
     A well-controlled study is timely for two reasons. First, accuracy gaps reported in the literature often 
conflate architectural differences with training recipes (e.g., label smoothing, MixUp/CutMix, 
RandAug/AutoAug policies, EMA, stochastic depth, and cosine/LR warm-up schedules). Because these 
choices strongly condition outcomes, a fair comparison must equalize the recipe as far as possible and 
report sensitivity. Second, the “best” model depends on contextual constraints: batch-size ceilings due 
to memory, inference precision (FP32 vs mixed-precision), kernel availability and library optimizations, 
and the cost of accuracy measured in watts, dollars, and milliseconds. Consequently, the optimal choice 
may vary between a hospital PACS system, an embedded camera, and a cloud API, even for the same 
nominal accuracy.  
     Our contributions are threefold. (1) We present a controlled, recipe-matched evaluation of 
representative ResNet and EfficientNet variants, reporting accuracy, FLOPs, prams, activation memory, 
and end-to-end latency/throughput under identical software stacks and precision settings. (2) We 
augment accuracy with deployment-centric metrics: batch-size ceilings, memory pressure, energy-per-
inference, and cost-to-target-accuracy, offering a decision-oriented view that better matches practitioner 
needs. (3) We analyze scaling behaviors (depth/width/resolution), transfer learning, and 
robustness/calibration, highlighting conditions under which each family is preferable. Taken together, 
our study aims to provide practical guidance for selecting between Reset and EfficientNet in real-world 
image classification, where trade-offs between robustness and efficiency are decisive. Finally, while our 
focus is on CNNs, we situate findings within the broader ecosystem: training recipes can narrow or 
widen gaps between architecture families; compression techniques (pruning, quantization, knowledge 
distillation) can shift the efficiency frontier; and deployment constraints (kernel fusion, operator 
availability) can favor one family over another. By making code, logs, and configurations available, we 
also emphasize reproducibility, enabling the community to replicate and extend our results under 
evolving hardware and software environments. 
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Image Classification 
     Image classification represents a cornerstone problem in computer vision, where the objective is to 
map input images into predefined semantic categories. Its significance is reflected in diverse application 
areas, including healthcare (e.g., automated diagnosis from radiological scans), security (e.g., face 
verification and surveillance), and transportation (e.g., autonomous driving systems). Figure 1 presents 
the Image Classification. 

 
Figure 1: Image Classification. 

 
     As a fundamental building block, advancements in image classification have had cascading effects 
on downstream tasks, such as object detection, semantic segmentation, and scene understanding [5]. 
The field initially relied on hand-engineered feature descriptors, such as Scale-Invariant Feature 
Transform (SIFT) and Histogram of Oriented Gradients (HOG), which extracted low- and mid-level 
features from images. Although these approaches achieved success in smaller datasets, they suffered 
from scalability limitations, particularly with high intra-class variability and large-scale benchmarks. The 
introduction of AlexNet [3] in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 
marked a paradigm shift by leveraging deep convolutional neural networks (CNNs) trained on GPUs.      
     AlexNet demonstrated that hierarchical feature representations could be learned directly from raw 
pixels, outperforming traditional feature engineering methods by a large margin. Subsequent 
architectures, such as VGGNet [8], emphasized depth and simplicity with uniform convolutional layers, 
while Inception Szegedy et al [9] introduced parallel multi-scale feature extraction to improve 
computational efficiency. These innovations paved the way for even deeper networks, but they also 
highlighted challenges, such as vanishing gradients, over fitting, and resource-intensive computations. 
Against this backdrop, ResNet and later EfficientNet emerged as landmark contributions, each 
addressing critical limitations of previous models while shaping the trajectory of modern image 
classification. Table shows comparison between ResNet and EfficientNet for Image Classification. 
 

Table 1: Comparison between ResNet and EfficientNet for Image Classification. 
Dimension ResNet EfficientNet 

Core idea Residual connections mitigate vanishing 
gradients and enable very deep CNNs. 

Compound scaling jointly balances depth, 
width, and input resolution for optimal 
efficiency. 

Typical variants 
(examples) 

ResNet-18/34 (shallower), ResNet-
50/101/152 (deeper, stronger baselines). 

EfficientNet-B0 (mobile-friendly) up to 
B7/L2 (progressively larger & more 
accurate). 

Classification 
accuracy 

(benchmarks, 
general trend) 

Strong, stable baselines across many 
datasets; improvements plateau with 
depth increases. 

State-of-the-art accuracy per unit 
compute; scales accuracy efficiently with 
model size. 

Accuracy-to-
compute ratio 

Good, but less favorable at very deep 
scales compared to newer families. 

Excellent; designed to maximize accuracy 
per FLOP/parameter. 

Computational 
complexity 

Increases notably with depth (e.g., 
50→101→152 layers). 

Tunable via compound scaling to meet 
specific compute budgets. 

Training efficiency Mature, widely supported; straightforward 
optimization with residual blocks. 

Efficient but can require careful scaling 
choices; often reaches target accuracy 
faster per compute. 

Inference speed (on 
common hardware) 

Fast on servers/GPUs; can be heavier on 
edge devices at higher depths. 

Generally faster at comparable accuracy 
on edge/mobile due to better efficiency. 

Memory footprint Moderate to large depending on depth; 
deeper variants can be memory-intensive. 

Typically, smaller for a given accuracy 
target; scales memory with need. 
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Scalability Scales by adding depth; diminishing 
returns beyond certain depths. 

Scales systematically in depth/width/ 
resolution with predictable gains. 

Robustness & 
generalization 

Proven robustness and transferability 
across tasks/datasets; widely used 
baseline. 

Competitive robustness; benefits from 
balanced scaling and modern training 
recipes. 

Implementation 
ecosystem 

Extremely mature: abundant code, 
pretrained weights, and tutorials across 
frameworks. 

Well supported and actively used; slightly 
fewer resources but ample in practice. 

Deployment 
scenarios 

Data centers, research baselines, tasks 
needing stable, well-understood behavior. 

Resource-constrained or latency-
sensitive apps (mobile/embedded) and 
cost-focused deployments. 

Strengths Simplicity, stability, interpretability of 
residual design; ubiquitous support. 

Superior efficiency (accuracy per 
FLOP/param); flexible scaling to 
hardware limits. 

Limitations Compute and memory rise quickly with 
depth; diminishing returns at extreme 
depths. 

Choosing the right scale (B0–B7/XL) 
adds a design step; very large variants 
can still be heavy. 

Practical selection 
guideline 

Prefer when you need a reliable, standard 
baseline and broad community support. 

Prefer when you need best accuracy 
under strict compute/latency or cost 
constraints. 

     The comparative analysis between ResNet and EfficientNet reveals that both architectures have 
made substantial contributions to the advancement of image classification in deep learning. ResNet 
remains a robust and dependable choice due to its simple residual connection design, stability during 
training, and widespread availability of pretrained models. Its maturity and extensive community support 
make it ideal for standard research applications and large-scale tasks that prioritize reliability and 
interpretability. In contrast, EfficientNet introduces a paradigm shift through its compound scaling 
approach, achieving superior accuracy-to-computation ratios by systematically balancing depth, width, 
and input resolution. It delivers exceptional performance efficiency, particularly suited to resource-
constrained or real-time environments, such as mobile and embedded systems. While ResNet provides 
consistent robustness, EfficientNet stands out for its scalability, optimized architecture, and adaptability 
to modern hardware constraints. Overall, the choice between the two depends on deployment context: 
ResNet serves as the benchmark model for consistency and transfer learning, whereas EfficientNet 
excels when maximizing performance per computational cost is critical. Both architectures, however, 
continue to influence next-generation CNN design principles and remain foundational in computer vision 
research and applications. 
ResNet (Residual Networks) 
     The Residual Network (ResNet), proposed by [1], tackled the vanishing gradient problem through 
the introduction of residual connections that allow gradients to bypass multiple layers, as shown in 
Figure 2. This architectural innovation enabled the successful training of networks exceeding 100 
layers, demonstrating record-breaking performance in the ILSVRC 2015 competition [7]. The residual 
block’s identity mapping facilitates stable optimization, making deeper models not only feasible but also 
practically useful. ResNet variants, such as ResNet-50, ResNet-101, and ResNet-152, leverage 
bottleneck blocks, which reduce computational cost while preserving representational capacity. These 
designs have made ResNet one of the most widely used backbones in transfer learning scenarios, 
powering state-of-the-art results in detection [6], segmentation, and even natural language processing 
tasks when adapted to vision-language models.  
     The strong generalization capacity of ResNet contributed to its long-standing dominance in 
academic benchmarks and industrial pipelines. However, the advantages of ResNet come with trade-
offs. Increasing depth substantially improves representational power but at the cost of higher training 
complexity and computational demand. Models like ResNet-152, while accurate, require significant 
GPU memory and computational time, which makes them less practical for resource-limited settings 
[5]. Moreover, performance gains diminish as depth increases, suggesting a limit to brute-force scaling. 
Compared to more recent designs, ResNet is also less parameter-efficient; achieving similar accuracy 
to modern models often requires more parameters and floating-point operations [10].  
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Figure 2: Residual Network (ResNet). 
 
EfficientNet 
     EfficientNet, introduced by [10], departed from conventional ad hoc scaling approaches by 
formalizing a compound scaling method. Instead of arbitrarily increasing depth, width, or input resolution 
in isolation, EfficientNet scales these three dimensions simultaneously using fixed coefficients derived 
from grid search. This methodology ensures balanced growth, avoiding inefficiencies associated with 
unidimensional scaling. The EfficientNet family (B0–B7) demonstrated remarkable results on ImageNet, 
achieving superior accuracy with significantly fewer parameters compared to networks like ResNet-152 
or Inception-v4. EfficientNet’s design incorporates mobile inverted bottleneck convolution (MBConv) 
and squeeze-and-excitation modules making it both powerful and efficient. In practical applications, 
EfficientNet models are highly versatile. Smaller versions (e.g., B0 and B1) are lightweight and suitable 
for mobile deployment, while larger ones (B6 and B7) achieve state-of-the-art accuracy on high-end 
systems. Nevertheless, this flexibility comes with limitations. Larger EfficientNet models demand 
extensive computational resources and often require advanced training strategies, such as 
AutoAugment, mixup, and stochastic depth, to achieve their reported accuracy. 
Relevance of ResNet and EfficientNet 
     ResNet and EfficientNet represent two pivotal yet distinct philosophies in CNN design. ResNet 
emphasizes depth and residual learning to push representational limits, while EfficientNet focuses on 
balancing accuracy and efficiency through principled scaling. A comparative analysis of these 
architectures is therefore essential to understand their trade-offs in accuracy, computational cost, 
parameter efficiency, and deployment feasibility. Such a comparison not only provides insights into 
architectural choices for specific applications but also informs the design of next-generation models that 
combine the strengths of both paradigms. 
Evaluation Criteria in Image Classification 
     In image classification tasks, assessing model performance requires multiple complementary 

metrics to capture both accuracy and efficiency as illustrated in Figure 3. Top-1 accuracy measures the 

proportion of correctly classified images, providing a direct indicator of the model’s predictive capability 

on benchmark datasets, such as ImageNet and CIFAR-100[5]. Number of parameters reflects the 

model’s complexity and storage requirements; models with fewer parameters achieving comparable 

accuracy are considered more efficient [7]. Floating-point operations (FLOPs) indicate the 

computational demand per forward pass, crucial for understanding processing costs, especially for real-

time applications. Inference speed measures how fast a model can classify new images, a key factor 

for deployment in latency-sensitive environments. Finally, model size determines memory consumption 

and feasibility for devices with limited resources, such as mobile or embedded systems. Collectively, 
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these metrics allow a balanced evaluation of accuracy, computational efficiency, and resource 

utilization in image classification tasks. 

Figure 3: Evaluation Criteria in Image Classification. 

ResNet Analysis 
     ResNet (Residual Network), fundamentally reshaped the development of deep learning 
architectures by introducing skip or residual connections that effectively mitigated the vanishing gradient 
problem and enabled the stable training of extremely deep neural networks, as illustrated in Figure 4. 
Unlike traditional feed forward models, residual blocks allow gradients to bypass several layers through 
identity mappings, ensuring smoother optimization and reducing degradation in performance as depth 
increases [1]. On benchmark datasets such as ImageNet, ResNet demonstrated state-of-the-art 
accuracy and scalability. For example, ResNet-50 achieves 76.3% Top-1 accuracy with approximately 
25.6 million parameters and 4.1 billion floating-point operations (FLOPs), offering a balance between 
accuracy and efficiency.  

Figure 4: ResNet Analysis. 
 
     Deeper variants, such as ResNet-101, increase accuracy slightly to 77.6%, but the parameter count 
nearly doubles to 44.6 million, with a corresponding rise in computational cost and inference time. While 
very deep networks like ResNet-152 provide marginal accuracy improvements, they highlight the 
diminishing returns of brute-force scaling in terms of accuracy versus computational demand. Despite 
these trade-offs, ResNets exhibit strong generalization capabilities, making them widely adopted as 
backbone architectures in object detection, semantic segmentation, medical imaging, and transfer 
learning tasks. Their ability to capture hierarchical feature representations across layers has contributed 
significantly to their long-standing influence in both academic and industrial pipelines. However, the 
advantages of ResNets come at the cost of increased resource requirements.  
     The large memory footprint, high inference latency, and computational overhead of deeper models 
limit their practicality in resource-constrained environments, such as mobile or embedded systems. 
Moreover, compared to more recent designs, including EfficientNet and Vision Transformers, ResNets 
are relatively less parameter-efficient, often requiring more parameters and FLOPs to achieve similar 
or lower accuracy. Consequently, while ResNet remains a landmark architecture that shaped modern 
computer vision, its relative inefficiency underscores the growing importance of compact, efficient, and 
scalable models in contemporary applications. 
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EfficientNet Analysis 
     EfficientNet employs a compound scaling strategy, balancing network depth, width, and input 
resolution to optimize both accuracy and efficiency [10]. The lightweight variant, EfficientNet-B0, 
achieves 77.1% Top-1 accuracy with only 5.3 million parameters and 0.39 billion FLOPs, demonstrating 
remarkable efficiency. EfficientNet-B4 attains 83.0% accuracy with 18.8 million parameters and 8.29 
billion FLOPs, while the largest variant, B7, reaches 84.4% Top-1 accuracy at the cost of 66.9 million 
parameters and 72.4 billion FLOPs. Compared to ResNet, EfficientNet models consistently provide a 
better accuracy-to-efficiency trade-off, offering faster inference and smaller model sizes relative to 
performance. This makes them particularly suitable for both high-accuracy tasks and deployment in 
environments with limited computational resources. 

Figure 5: EfficientNet Analysis. 
Discussion 
     This study provides a comparative analysis of two landmark CNN architectures ResNet and 
EfficientNet in the context of image classification. The comparison underscores how architectural 
innovations directly influence not only accuracy but also computational efficiency, scalability, and 
deployment feasibility. ResNet’s introduction of residual connections addressed the long-standing 
problem of vanishing gradients, enabling the training of networks with unprecedented depth. This 
innovation made ResNet a cornerstone model in computer vision, widely adopted as a backbone for 
transfer learning in diverse downstream tasks such as detection, segmentation, and medical imaging. 
The results discussed here reaffirm ResNet’s stability, robustness, and generalisation capacity, which 
continue to make it a reliable benchmark model in both academic research and industrial applications. 
However, the analysis also reveals the inherent limitations of ResNet: deeper variants increase 
computational burden and memory usage disproportionately to the gains in accuracy. 
     This diminishing return effect highlights that depth alone is not a sufficient strategy for sustained 
improvements in model performance. On the other hand, EfficientNet introduces a paradigm shift by 
adopting compound scaling to balance network depth, width, and input resolution systematically. The 
findings from benchmark datasets demonstrate that EfficientNet achieves superior accuracy-to-
computation ratios, achieving state-of-the-art accuracy with significantly fewer parameters and FLOPs 
compared to ResNet. This efficiency makes EfficientNet particularly advantageous for real-time 
applications and deployment on resource-constrained devices, such as mobile and embedded systems, 
where computational overhead is a critical concern. At the same time, EfficientNet’s reliance on 
compound scaling and architecture search raises questions about implementation complexity and 
adaptability in domains where task-specific customisation is needed.  
     The broader implication of this analysis is that there is no one-size-fits-all model for image 
classification. ResNet remains highly valuable where stability, interpretability, and transferability are 
priorities, while EfficientNet is more suited for applications demanding optimized efficiency and high 
accuracy under constrained computational budgets. The trade-offs identified suggest that model 
selection should be guided by the specific requirements of the deployment context balancing factors 
such as accuracy needs, hardware availability, latency constraints, and scalability. Moreover, these 
insights also highlight directions for future research. Hybrid approaches that integrate the residual 
learning principles of ResNet with the efficiency-driven scaling strategies of EfficientNet may offer new 
opportunities for advancing image classification. Moreover, with the rise of Vision Transformers and 
lightweight hybrid CNN-Transformer models, the efficiency-robustness trade-off observed between 
ResNet and EfficientNet provides a valuable baseline for assessing the next generation of architectures.     
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Conclusion 
     This study presented a detailed comparison between ResNet and EfficientNet architectures in image 
classification tasks, considering accuracy, computational efficiency, and resource utilization. ResNet, 
with its residual connections, remains a robust and reliable architecture for hierarchical feature 
extraction, offering consistent performance across various datasets. However, its deeper variants 
require more parameters and computational resources, leading to increased inference time and higher 
memory usage. EfficientNet, through its compound scaling strategy, achieves a superior balance 
between accuracy and efficiency. Smaller variants reach competitive accuracy with significantly fewer 
parameters and lower computational cost, while larger variants attain state-of-the-art performance 
without excessively compromising inference speed. Overall, the selection of an appropriate architecture 
should be guided by the specific requirements of the application. EfficientNet is particularly suitable for 
scenarios with limited computational resources or real-time constraints, while ResNet is advantageous 
when deep feature representation and model stability are prioritized. This analysis highlights the 
importance of considering both accuracy and efficiency in the design and deployment of image 
classification models. 
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