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Abstract

This paper presents a novel theoretical framework to establish the existence and unigqueness of
solutions for nonlinear functional integral equations. The analysis is conducted within the intricate
topological structure of Fréchet spaces, which presents a significant generalization beyond the more
common Banach space settings. The central contribution is the formulation of a logarithmically
weighted x-contraction condition, defined as w:= (L;M, + M;L,) - e™2 < 1. This specific parameter
optimally incorporates the Lipschitz constants L;, the nonlinear function bounds M;, and an explicitly
derived decay factor associated with the seminorm structure. The methodological paradigm navigates
the core topological challenges inherent in non-normable spaces by constructing a convergent
sequence of solutions on bounded intervals, and subsequently extending the global solution through a
rigorous argument of consistency. The mathematical optimality of the contraction parameter x is
analytically demonstrated by showing that the weight function, expressed as In(1 + 1)/(1 + 1), attains
its global maximum value of e! at the specific point where T = e — 1. The theoretical construct is further
validated through a fractional generalization utilizing Mittag-Leffler kernels, and a detailed case study
is presented on a physical model of heat transfer that incorporates oscillatory and saturating memory
effects. This comprehensive solution theory effectively bridges abstract principles of functional analysis
with practical modeling applications for hereditary phenomena in infinite-dimensional systems.
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Introduction

In the field of mathematical modeling, nonlinear functional integral equations are pivotal
instruments for representing complex systems that possess memory effects. Such systems are
ubiquitous across a multitude of scientific disciplines, including but not limited to viscoelasticity,
thermal transport, and various forms of anomalous diffusion [1, 2]. A robust theoretical foundation
for the existence and uniqueness of solutions to these equations has been extensively developed
within Banach spaces, primarily through the application of classical fixed-point theorems [3, 4, 5].
However, the generalization of these analytical constructs to the more abstract and topologically
intricate domain of Fréchet spaces poses profound theoretical complexities and unique challenges
[6].

Within these infinite-dimensional topological vector spaces, the underlying structure is not
defined by a single norm but rather by a countably infinite family of seminorms. This fundamental
characteristic imposes significant constraints on the direct application of traditional contraction
principles, particularly when one considers unbounded temporal or spatial domains. Various
scholarly endeavors have investigated these intricate complexities, employing different
methodologies such as compactness arguments or generalized fixed-point frameworks to analyze
equations of the Urysohn type [7, 8]. These prior investigations underscore the sophisticated
analytical obstacles that arise in the absence of a normable structure and emphasize the critical
need for novel methodological approaches capable of ensuring uniform convergence behavior
across the entire spectrum of seminorms concurrently.

Building upon this established corpus of literature, the current investigation addresses a
nonlinear functional integral equation characterized by a product-type nonlinearity, a structural
formulation previously examined using the Schauder fixed-point theorem [9]. The equation is
expressed as follows:

2() = c() + ( [ oo z(a))da) ( [ o a,z(cr))da),r >0 @
0 0

This specific mathematical form naturally appears in physical models that involve the confluence
of hereditary memory mechanisms with nonlinear multiplicative interactions. To establish a unified
theoretical framework for existence and uniqueness, a logarithmically weighted x-contraction
paradigm is introduced. The central contraction constraint, formulated as «:= (LM, + M;L,)
e~? < 1, functions to systematically integrate the Lipschitz constants ( L; ), the nonlinear bounds (
M; ), and an analytically derived optimal seminorm decay factor. The present rigorous analysis
demonstrates that this decay structure is mathematically sharp, as it is derived from the global

maximum of the weight function @ which achieves its peak value of e~ precisely at the
temporal coordinate T = e — 1.

The principal mathematical contributions of this research encompass the development of a
unified fixed-point framework for nonlinear functional integral equations in Fréchet spaces [10], and
the provision of a fractional extension that utilizes Mittag-Leffler kernels, which possesses direct
applicability to models of anomalous diffusion and the behavior of viscoelastic materials [11, 12].
Additionally, a rigorous physical validation is provided through a comprehensive application to a
heat transfer model that incorporates oscillatory-saturating memory effects, thereby confirming the
practical utility of the theoretical results. This exhaustive solution theory forges a direct link between
abstract principles of functional analysis and concrete modeling of hereditary phenomena,
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consequently expanding the analytical toolkit available for investigating nonlinear integral
equations.

Preliminary Concepts and Definitions

Topological Vector Spaces and Contraction Mappings.

Definition 1 (Fréchet Space). A topological vector space is classified as a Fréchet space if it is
locally convex, possesses a metrizable topology, and is complete with respect to that topology.
These spaces are characterized by a countable family of seminorms, denoted by {|| - ||;}sen- In this
particular work, the focus is placed upon the function space Z = C([0, ), R), which consists of all
continuous real-valued functions defined on the non-negative real line. The topological structure of
this space is induced by the following family of seminorms:

llzll; = sup |z(7)|, V¢ €N
7€[0,£]

The space Z is known to be complete under this collection of seminorms. This completeness
arises from the fact that uniform convergence on every compact interval [0,¢] ensures the
preservation of continuity. Thus, any sequence that exhibits Cauchy behavior with respect to each
seminorm || - ||, will necessarily converge to a function that maintains its continuity across the entire
domain [0, ).

Definition 2 (Sequential Contraction). Consider the Fréchet space Z = C(]0, «), R) endowed
with the seminorms ||z||, = sup |z(7)|. An operator T: Z — Z is formally classified as a sequential
7€[0,£)

Contraction under the simultaneous satisfaction of the following three conditions:
Local Contraction Property: For every positive integer ¢ € N, the operator 77 constitutes a strict k-
contraction when its domain is restricted to the Banach space ( C([0,2]), ]l - Il ):

1T (z) =Tzl < kllzy — 2,15, V21,2, € ZWhere 0 <k < 1

Solution Consistency: Let z, be a solution to the operator equation z, = 7 (z,) within the restricted
space C([0,#]). Then the following consistency relation must be maintained:

Zo(1) = zp (D) VT E[0,£'], V' < £
Global Convergence: The pointwise limit z(7) = }1_{2 z,(t) exists within the space Z and satisfies

the operator equation T (z) = z globally across the entire domain [0, ).

Definition 3 (Lipschitz Condition with Attenuation). A function g: [0,)? X R — R is said to satisfy
a time-attenuating Lipschitz condition if there exists a positive constant L > 0 such that the following
inequality holds universally:

L
lg(tr,0,2)) —g(r,0,2;)| < m|21 — 2,|,V1,0 € [0,0),Vz;,z, ER

This particular decay structure serves to mathematically model the fading memory
phenomenon commonly observed in various physical systems.
Definition 4 (Mittag-Leffler Kernel for Fractional Systems). The Mittag-Leffler function, denoted
as E, ({), is defined by its convergent series expansion [12]:

v
EM(O_KZ:O gy 08>0

For the purpose of analyzing fractional dynamical systems, a memory kernel exhibiting
temporal decay is considered, taking the following specific form:

Eq1(=A(r — 0)%)

K@) = Da+o

,A>0,a € (0,1)
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The subsequent fundamental assumptions constitute the basis of the mathematical analysis
presented in this work:

The function ¢ € Z is a continuous and bounded function defined over the entire interval [0, ).
For each index i = 1,2, the function g; exhibits continuity with respect to the variable T and satisfies
a time-attenuating Lipschitz condition with an associated constant L; :

L:
l9:(r,0,21) — 9i(r,0,2,)| < m
The nonlinear terms are uniformly bounded, subject to the following inequality:

|zy — 2,

(1,0,2)]| € ————— V1,0 € [0,),Vz € R.
95,0, < s gy Y0 € 10,00,z

The following supremum condition is required to hold across all-natural numbers:
MM,
sup (llelle + =52) < e

Theorem (Leray-Schauder Alternative [13]). Let T be a contraction mapping defined on a closed
Subset W c Z, and suppose that the image set T7(W) is bounded. Then one of the following
mutually exclusive statements must hold:

The operator T possesses a unique fixed point within W, or There exist a scalar A € (0,1), a
natural number £ € N, and a function u € W, such that the following condition is satisfied:

llu — A7 @)l = 0.

Main Result
Formulation and Operator Continuity.

The central concern of this investigation is the nonlinear functional integral equation with a
product structure, previously introduced as:

z(t) =c(7) + <IT g1(t, 0,z(0))da> (fr g.(z, a,z(a))da),r € [0, ). (2)
0 0

In this context, c:[0,) — R is a continuous function, and the functions g;: [0, )2 X R - R for
i = 1,2 are given functions that satisfy the comprehensive assumptions (A1)-(A4).
An associated nonlinear operator 7: Z — Z is defined as follows:

T

T
T2)() =c(x) + <f0 g1(t, a,z(a))da) <f0 g- (1, a,z(cr))da). 3
Lemma 1 (Continuity of the Operator). Given that the assumptions (A1)-(A4) hold, the operator
T:Z - Z is well-defined and demonstrates continuity within the Fréchet topological structure.
Proof. To establish the well-definedness of the operator, it must be verified that for an arbitrary function
z € Z, the resulting function T (z) maintains continuity on [0, ). Let an arbitrary point 7, = 0 be selected.
The difference |T(2)(t) — T (2)(t,)| can be bounded from above by the following expression:

2 2
T@@ = T@ @) < le@ = o)l + (]_[ Ji(r)>— [] oo ||

where J;(7) = fOT gi(t,0,z(0))do. Assumption (A1) ensures that the function c is continuous. For the
product term, the following inequality can be employed:

2
[]a0-]] a6 <) 10-5w@I] | U 1@l
j=1 k+j T Eel0e

By applying assumption (A3) and considering the integral bound fOT (fg) = In(1 + ), the integral

terms are bounded as follows:
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In(1+7) _

-1
147 ~— % 7

1J: (D] = M;

To demonstrate the continuity of J;(r), one observes that the integrand g;(z,0,z(0)) is
continuous with respect to t for a fixed o (by (A2)). It is also dominated by the integrable function

(1f;)2 for ¢ € [0,7] and for 7 within any neighborhood of 7, (as a consequence of (A3)).

Consequently, an application of the

Dominated Convergence Theorem guarantees the continuity of J;(7) at t,. This line of
reasoning leads to the conclusion that the operator output 7 (z) is a continuous function.

To prove continuity in the Fréchet topology, for each ¢ € N, continuity must be established with
respect to the seminorm || - ||,. Let the sequence of functions {z,} converge to z in Z, which is
equivalent to uniform convergence on every compact interval [0,¢]. One may then consider the
difference ||7(z;) — T (2)||,, which is bounded by:

17 () = T@lle < lle = cll, + H(]_[ Ji(zk))—(l_[ 3(2)

£

The product term satisfies the following bound:

H(ﬂ Ji(zk))— (] a»)

2
[ < ; d;(z) - Jj(z)ll{,g Tim]lgm(zk(r)n

In(1+71)

———— < e~ !, one can bound
1+7

Utilizing assumptions (A2) and (A3) and noting that for T € [0, #],
the difference between the integral terms:

T Lj In

0 (1+71)(1+40)

19,z (@ - 3;@)(@)] < 12(0) — 2(0)ldo < L =22 |1z = zlle < Lie ™|z, — 2.

1

As k - oo, it follows that ||z, — z|l, - 0, which in turn implies ||J;(z,) — J]-(z)||€ - 0. Given that the
supremum of the integral terms, sup |J,,(z,(7))l, is bounded by M,,e™1, it is therefore
T€[0,¢]

established that ||T(z,) — T (2)|l, » 0 as k — .
Lemma 2 (Global Solution via Sequential Contraction). Suppose that the operator T fulfills both
the local contraction property (i) and the solution consistency property (ii) from Definition 2.2. Under
these conditions, the sequence {z,} of fixed points obtained on the finite intervals [0, £] converges
uniformly on all compact subsets of [0, ) to a global solution z € Z.
Proof. By virtue of property (i), for each positive integer ¢, there exists a unique fixed point z, €
C(]0,#]) that satisfies the relationship z, = T(z,). The solution consistency condition (ii) provides
the compatibility relation z,|, ;1 = z, for all £ < £. This inherent consistency enables the definition
of a global function z: [0, ) — R by setting z(7) = z,(t) for any £ > 7. The function z is well-defined
and continuous on [0,) since its restriction to any compact interval [0,#] is continuous.
Furthermore, for any t = 0, by selecting an integer £ > t, one has z(t) = z,(t) = T(z,)(7) =
T (2)(7), as the operator T depends solely on the values of its argument up to 7, and z(o) = z,(0)
for all o € [0, 7]. Consequently, it is demonstrated that z is a fixed point of T in the space Z.

To substantiate that the sequence {z,} converges to z uniformly on any compact interval [0, ¢'],
it is sufficient to note that for any ¢ > ¢', the restriction z[[,, is identical to z, due to the

consistency property. This implies that on the interval [0, ¢'], the sequence {z,} becomes constant
for all £ > ¢’ and is equal to z,r = zl[o‘{:]. As a result, the convergence is uniform on any compact
interval of interest.

Theorem (Existence and Uniqueness). Assuming that ¢ € Z and conditions (A1)-(A4) are fulfilled,
if the contraction parameter x: = (LM, + M;L,) - e™% < 1, then:
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The operator T defined in (3) constitutes a sequential contraction (as per Definition 2.2). The
functional equation (2) possesses a unique solution within the space Z.

Proof. First, it must be established that the operator T satisfies the sequential contraction
properties.

Let z,,z, € Z be arbitrary functions and fix a value t € [0,#]. The difference |T(z;)(t) — T(z,)(7)|
may be estimated by adding and subtracting appropriate terms:

|7 (z) (@) =T (2)(D)| <

f 915,02, (0))do
0

f 19:(2,0,2,(0)) = g>(z, 0, 2 (@) do
0

+

f [9:(1,0,2,(0)) — 91z, 0, 2, (0))]dos f 9:(t,0,2,(0))do
0 0

Upon applying the boundedness (A3) and Lipschitz (A2) conditions, and using the bound
[z, — z,]|, for the seminorm on [0, ¢], the inequality becomes:

- T M, p T L, ]
—<f0 a+n+0) “)( , Aro+ay 7l o)

T L1 d T Mz d
+ UO A+ +o) a2zl U) ' UO A+Dd+o) ")
In(1 In(1
= (1,2 (1, D )

1+7 1+7
( In(1+1) I I )(M In(1 + r))
Y4 T 2l 2 1+1
[In(1 + 1)]?
1+ 1)?
The next step is to determine the maximum value of the function {(t) =
Differentiation of this function yields:

o - 4D gz -0 +D- 1 1-In(1+0)
1+ 1)? (1+1)?
Setting ¢’ (7) = 0 provides the condition In(1 + 7) = 1, which implies that the critical point occurs
at T = e — 1. The second derivative confirms that this point is a maximum:
—3+2In(1 + 1)
(" =——FF 3 —
1+1)
At the pointt =e —1,{"(e — 1) = —1/e3 < 0, which confirms a global maximum. Consequently,
the global maximum value is {(e — 1) = e~1. From this reasoning, it follows that:
2
M < e 2vr >0
(1+1)?
By substituting this bound back into the estimation, it is found that:
|7 (21)(7) = T (2)(0)| < (ML, + L1 M) - 9_2”21 — 7|l = kllzy — z2 |l
Taking the supremum over t € [0,¢] yields [|T(z,) — T(z)|l, < ||z, — z;]|,- Since the
condition k < 1 is given, the operator T is a contraction on (C([0,#]), || - ||,) for each integer .
Let z, be the unique solution to z, = 7(z,) on the interval [0, ¢], and let z,» be the solution on
[0, ¢'] for £' < £. The function Zel[o,g'] represents the restriction of z, to the smaller interval [0, £'].

For any 7 € [0,¢'], the following expression holds:

= (MyL; + L1 M) Iz, =zl

DD forr > 0
1+T -

Ze|[0,eq(r)=z[(r)=rr(zf)(r)=c(r>+< | gl(r,o,zf(a))da) ( | gz(f,a,Ze(a))da>

Since the integrals depend only on the values of z,(¢) for o € [0, 7] < [0, '], this may be
expressed as:

Zeljo,e) (1) =T (Z#|[o,#’]) (.

This demonstrates that Z{z|[0‘[r] is a fixed point of the operator J° within the space C([0, ¢']). Given

that the Banach fixed-point theorem ensures a unique fixed point in this space, it must be the case
that z{zl[w:] = z,. This reasoning establishes the solution consistency property.
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As it has been proven that T satisfies both the local contraction and the solution consistency
properties, Lemma guarantees the existence of a global solution z € Z to the equation z = T (2).

To demonstrate uniqueness, an assumption can be made, for the sake of contradiction, that z,
and z, are two distinct global solutions within Z. This implies that for any ¢ € N, their respective
restrictions z,|jo,,; and z,ljo, are both fixed points of T within the Banach space C([0,¢]). The
uniqueness of the fixed point in this space, as guaranteed by the Banach fixed-point theorem,
implies that z, |0, = 2[0,¢- Since this equality holds for all ¢, it must be that z,(7) = z,(z) for all
T = 0, which contradicts the initial assumption that they are distinct solutions.
Corollary (Fractional Extension with Mittag-Leffler Kernels). Consider a fractional integral
equation with inherent memory effects:

(7 Eaga (AT = 0))
z(t) = c(1) + 1:1[ <J; El O o) gi(a,z(a))da> (4)

where E,, , represents the Mittag-Leffler function. It can be shown that Theorem holds, provided
that the modified contraction condition.

 do
Jy Eaa(=(x = 0)*0)
K%: = Kk - maxsup 0o ° : lt+o

<1
i=1,2 150 1+t

is satisfied, where k is defined as in Theorem. A sufficient condition for this is k%: = K - max |
=1,

Eq1(=Ai(e — 1) %) |< 1, assuming that the Mittag-Leffler function's maximum value is attained
near the critical point of the logarithmic weight.

Comprehensive Application: A Nonlinear Heat Transfer Model

A physically motivated heat transfer process that includes nonlinear dissipation and memory is
considered here. The model can be expressed as:

- T sin(z(0)) Tarctan(z(o))
z(t)=e +<f0 ot da)(fo —gmte da),‘[ZO (5

In this formulation, the term e™" serves as a representation of ambient heat loss, the term
sin(z(o0)) captures oscillatory thermal interactions, and the term arctan(z(g)) models flux
saturation. The kernel e ~(*+9) signifies an exponential attenuation of historical contributions over
time.

Verification of Assumptions. The first function, sin(z), has a Lipschitz constant of 1, as the Mean
Value Theorem gives |[sin(z,) — sin(z,)| < |z, — z,|. Similarly, for the second function,

1:22, which is bounded by 1. Consequently, one obtains the Lipschitz

constants L; = 1 and L, = 1. For the nonlinear terms, the following uniform bounds are established:

arctan(z), its derivative is

sin(z) 1 < 1
et | T et T (1+1)(1+0)
And
arctan(z) /2 < /2
et | T e™r T (14+17)(1+0)

Thus, the uniform bounds are found to be M; = 1 and M, = /2 = 1.5708.
Sequential contraction parameter: The parameter k is computed as:
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T 1
K= (1~§+ 1- 1)-e—zz (1.5708 + 1) - 0.1353 ~ 0.348 < 1
Since all the required assumptions are fully met, Theorem guarantees the existence of a unique
global solution for equation (5).
Fractional Extension to Viscoelastic Materials.
The model is now extended to a fractional form, applicable for viscoelastic materials that exhibit
power-law memory:

2@ =e " + ( f ' E°'8'1(_e(f+; ) sin(z(a))da) ( f ' E°'8'1(_e(T: ") arctan(z(a))da) 6)
0 0

The modified contraction parameter in this case incorporates the decay characteristic of the
MittagLeffler function. By applying the sufficient condition from the corollary, it is found that:

k%8 =k - |Egg,(—(e — 1)°%)| ~ 0.348 - 0.487 ~ 0.169 < 1

This result confirms that the uniqueness of the solution is preserved, in accordance with the
findings of Corollary.
Conclusion

This academic paper has successfully developed a comprehensive and robust mathematical
paradigm for the resolution of nonlinear functional integral equations within the topological
framework of Fréchet spaces. A novel logarithmically weighted k-contraction construct was
introduced, which systematically aligns Lipschitz constants, nonlinear bounds, and a seminorm
decay factor to guarantee consistent convergence across all seminorms simultaneously. The
rigorous derivation of the logarithmic decay factor, which precisely demonstrates that the
[In(1+1)]?

(1+7)2

to complete the theoretical foundations. From this perspective, the solution defined as z(7) =
}Lrgzg(r) is now fully justified as a global solution within the space Z.

expression is bounded by e~2, coupled with a proof of operator continuity (Lemma), serves

Furthermore, it was demonstrated that the x-contraction framework can be naturally extended
to incorporate Mittag-Leffler kernels, thereby providing a unified solution theory for equations that
model complex memory effects in various physical systems. The provided heat transfer case study
serves as a rigorous validation of this theoretical paradigm, demonstrating meticulous adherence
to all mathematical assumptions and confirming the concrete applicability of the methodology to
real-world dynamical systems characterized by hereditary memory.

By bridging abstract principles of functional analysis with practical mathematical modeling, this
work makes a significant contribution to the analytical toolkit available for studying nonlinear
phenomena in engineering and physics. The results conclusively establish that analytical
techniques developed within the more restrictive context of finite-dimensional spaces can be
rigorously and successfully extended to infinite-dimensional spaces while maintaining complete
mathematical integrity. This opens up new avenues for future research into complex systems with
hereditary characteristics.
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