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Abstract  
This paper presents a novel theoretical framework to establish the existence and uniqueness of 
solutions for nonlinear functional integral equations. The analysis is conducted within the intricate 
topological structure of Fréchet spaces, which presents a significant generalization beyond the more 
common Banach space settings. The central contribution is the formulation of a logarithmically 

weighted κ-contraction condition, defined as κ:= (L1M2 +M1L2) ⋅ e
−2 < 1. This specific parameter 

optimally incorporates the Lipschitz constants Li, the nonlinear function bounds Mi, and an explicitly 
derived decay factor associated with the seminorm structure. The methodological paradigm navigates 
the core topological challenges inherent in non-normable spaces by constructing a convergent 
sequence of solutions on bounded intervals, and subsequently extending the global solution through a 
rigorous argument of consistency. The mathematical optimality of the contraction parameter κ is 

analytically demonstrated by showing that the weight function, expressed as ln⁡(1 + τ)/(1 + τ), attains 

its global maximum value of e−1 at the specific point where τ = e − 1. The theoretical construct is further 
validated through a fractional generalization utilizing Mittag-Leffler kernels, and a detailed case study 
is presented on a physical model of heat transfer that incorporates oscillatory and saturating memory 
effects. This comprehensive solution theory effectively bridges abstract principles of functional analysis 
with practical modeling applications for hereditary phenomena in infinite-dimensional systems. 
 

Keywords: Fréchet spaces, Mittag-Leffler kernels, Existence and uniqueness, Nonlinear integral, 
Urysohn. 

 الملخص
تتناول هذه الورقة البحثية نتائج شاملة حول الوجود والوحدانية لمعادلات التكامل الدالية غير الخطية في فضاءات 

ف شرط الانكماش κ وقد تم تقديم إطار عمل جديد قائم على انكماش .فريشيه   موزون لوغاريتميًا، حيث يعُرَّ
𝜿:= (𝑳𝟏𝑴𝟐 +𝑴𝟏𝑳𝟐) ⋅ 𝒆

−𝟐 < ، 𝑴𝒊، والحدود غير الخطية 𝑳𝒊بما يحقق تزامنًا منهجيًا بين ثوابت ليبشيتز  𝟏
تعالج المنهجية التحديات الطوبولوجية الأساسية في الفضاءات غير القابلة للقياس  .وانحسار أشباه المعايير الأمثل

فترات منتهية، ثم تمديد الحلول من خلال بناء انكماشات متتابعة على  (non-normable spaces) المعياري
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ر امتداد كسري باستخدام نوى ميتاغ .بشكل عالمي عبر الاستمرار المتسق ِّ  Mittag-Leffler) ليفـلر-كما طُو 
kernels) المشبعة، بما يؤكد الإطار -مع تطبيق فيزيائي مفصل على انتقال الحرارة ذي التأثيرات الذاكرية المتذبذبة

 extremal) ذو حدة تحليلية قصوى من خلال دراسة متطرفة ⁡𝜿تبي ن أن معامل الانكماش  وقد .النظري بشكل صارم

analysis) لدالة الوزن:⁡𝐥𝐧⁡(𝟏+ 𝒕)/(𝟏+ 𝒕),  حيث تحقق القيمة العظمى⁡𝒆−𝟏 at 𝒕 = 𝒆 − إن النظرية 𝟏
والنمذجة العملية للظواهر الوراثية في الكاملة للحلول التي تم التوصل إليها تجسر الفجوة بين التحليل الدالي التجريدي 

 .فضاءات لانهائية الأبعاد
 

 .أوريشون، معادلات التكامل غير الخطية، الوجود والوحدانية ليفـلر،-نوى ميتاغ، فضاءات فريشيه الكلمات المفتاحية:
Introduction 
     In the field of mathematical modeling, nonlinear functional integral equations are pivotal 
instruments for representing complex systems that possess memory effects. Such systems are 
ubiquitous across a multitude of scientific disciplines, including but not limited to viscoelasticity, 
thermal transport, and various forms of anomalous diffusion [1, 2]. A robust theoretical foundation 
for the existence and uniqueness of solutions to these equations has been extensively developed 
within Banach spaces, primarily through the application of classical fixed-point theorems [3, 4, 5]. 
However, the generalization of these analytical constructs to the more abstract and topologically 
intricate domain of Fréchet spaces poses profound theoretical complexities and unique challenges 
[6]. 
     Within these infinite-dimensional topological vector spaces, the underlying structure is not 
defined by a single norm but rather by a countably infinite family of seminorms. This fundamental 
characteristic imposes significant constraints on the direct application of traditional contraction 
principles, particularly when one considers unbounded temporal or spatial domains. Various 
scholarly endeavors have investigated these intricate complexities, employing different 
methodologies such as compactness arguments or generalized fixed-point frameworks to analyze 
equations of the Urysohn type [7, 8]. These prior investigations underscore the sophisticated 
analytical obstacles that arise in the absence of a normable structure and emphasize the critical 
need for novel methodological approaches capable of ensuring uniform convergence behavior 
across the entire spectrum of seminorms concurrently. 
     Building upon this established corpus of literature, the current investigation addresses a 
nonlinear functional integral equation characterized by a product-type nonlinearity, a structural 
formulation previously examined using the Schauder fixed-point theorem [9]. The equation is 
expressed as follows: 
 

𝑧(𝜏) = 𝑐(𝜏) + (∫  
𝜏

0

 𝑔1(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎) (∫  
𝜏

0

 𝑔2(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎) , 𝜏 ≥ 0 (1) 

      
     This specific mathematical form naturally appears in physical models that involve the confluence 
of hereditary memory mechanisms with nonlinear multiplicative interactions. To establish a unified 
theoretical framework for existence and uniqueness, a logarithmically weighted 𝜅-contraction 

paradigm is introduced. The central contraction constraint, formulated as 𝜅:= (𝐿1𝑀2 +𝑀1𝐿2) ⋅
𝑒−2 < 1, functions to systematically integrate the Lipschitz constants ( 𝐿𝑖 ), the nonlinear bounds ( 
𝑀𝑖 ), and an analytically derived optimal seminorm decay factor. The present rigorous analysis 
demonstrates that this decay structure is mathematically sharp, as it is derived from the global 

maximum of the weight function 
ln⁡(1+𝜏)

1+𝜏
, which achieves its peak value of 𝑒−1 precisely at the 

temporal coordinate 𝜏 = 𝑒 − 1. 
     The principal mathematical contributions of this research encompass the development of a 
unified fixed-point framework for nonlinear functional integral equations in Fréchet spaces [10], and 
the provision of a fractional extension that utilizes Mittag-Leffler kernels, which possesses direct 
applicability to models of anomalous diffusion and the behavior of viscoelastic materials [11, 12]. 
Additionally, a rigorous physical validation is provided through a comprehensive application to a 
heat transfer model that incorporates oscillatory-saturating memory effects, thereby confirming the 
practical utility of the theoretical results. This exhaustive solution theory forges a direct link between 
abstract principles of functional analysis and concrete modeling of hereditary phenomena, 
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consequently expanding the analytical toolkit available for investigating nonlinear integral 
equations. 
Preliminary Concepts and Definitions 
Topological Vector Spaces and Contraction Mappings. 
Definition 1 (Fréchet Space). A topological vector space is classified as a Fréchet space if it is 
locally convex, possesses a metrizable topology, and is complete with respect to that topology. 
These spaces are characterized by a countable family of seminorms, denoted by {‖ ⋅ ‖ℓ}ℓ∈ℕ. In this 
particular work, the focus is placed upon the function space 𝒵 = 𝐶([0,∞), ℝ), which consists of all 
continuous real-valued functions defined on the non-negative real line. The topological structure of 
this space is induced by the following family of seminorms: 
 

‖𝑧‖ℓ = sup
𝜏∈[0,ℓ]

 |𝑧(𝜏)|, ∀ℓ ∈ ℕ 

 
     The space 𝒵 is known to be complete under this collection of seminorms. This completeness 
arises from the fact that uniform convergence on every compact interval [0, ℓ] ensures the 
preservation of continuity. Thus, any sequence that exhibits Cauchy behavior with respect to each 
seminorm ‖ ⋅ ‖ℓ will necessarily converge to a function that maintains its continuity across the entire 

domain [0,∞). 
Definition 2 (Sequential Contraction). Consider the Fréchet space 𝒵 = 𝐶([0,∞), ℝ) endowed 

with the seminorms ‖𝑧‖ℓ = sup
𝜏∈[0,ℓ]

 |𝑧(𝜏)|. An operator 𝒯:𝒵 → 𝒵 is formally classified as a sequential      

Contraction under the simultaneous satisfaction of the following three conditions: 
Local Contraction Property: For every positive integer ℓ ∈ ℕ, the operator 𝒯 constitutes a strict 𝜅-

contraction when its domain is restricted to the Banach space ( 𝐶([0, ℓ]), ‖ ⋅ ‖ℓ ): 
 

‖𝒯(𝑧1) − 𝒯(𝑧2)‖ℓ ≤ 𝜅‖𝑧1 − 𝑧2‖ℓ, ∀𝑧1, 𝑧2 ∈ 𝒵 where 0 ≤ 𝜅 < 1 
 
Solution Consistency: Let 𝑧ℓ be a solution to the operator equation 𝑧ℓ = 𝒯(𝑧ℓ) within the restricted 

space 𝐶([0, ℓ]). Then the following consistency relation must be maintained: 

𝑧ℓ(𝜏) = 𝑧ℓ′(𝜏)⁡∀𝜏 ∈ [0, ℓ′], ∀ℓ′ < ℓ 

Global Convergence: The pointwise limit 𝑧(𝜏) = lim
ℓ→∞

 𝑧ℓ(𝜏) exists within the space 𝒵 and satisfies 

the operator equation 𝒯(𝑧) = 𝑧 globally across the entire domain [0,∞). 

Definition 3 (Lipschitz Condition with Attenuation). A function 𝑔: [0,∞)2 × ℝ → ℝ is said to satisfy 

a time-attenuating Lipschitz condition if there exists a positive constant 𝐿 > 0 such that the following 
inequality holds universally: 

|𝑔(𝜏, 𝜎, 𝑧1) − 𝑔(𝜏, 𝜎, 𝑧2)| ≤
𝐿

(1 + 𝜏)(1 + 𝜎)
|𝑧1 − 𝑧2|, ∀𝜏, 𝜎 ∈ [0,∞), ∀𝑧1, 𝑧2 ∈ ℝ 

    This particular decay structure serves to mathematically model the fading memory 
phenomenon commonly observed in various physical systems. 
Definition 4 (Mittag-Leffler Kernel for Fractional Systems). The Mittag-Leffler function, denoted 

as 𝐸𝛼,𝛽(𝜁), is defined by its convergent series expansion [12]: 

𝐸𝛼,𝛽(𝜁) = ∑  

∞

𝜅=0

𝜁𝜅

Γ(𝛼𝜅 + 𝛽)
, 𝛼 > 0, 𝛽 > 0 

     For the purpose of analyzing fractional dynamical systems, a memory kernel exhibiting 

temporal decay is considered, taking the following specific form: 

𝒦(𝜏, 𝜎) =
𝐸𝛼,1(−𝜆(𝜏 − 𝜎)𝛼)

(1 + 𝜏)(1 + 𝜎)
, 𝜆 > 0, 𝛼 ∈ (0,1) 
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     The subsequent fundamental assumptions constitute the basis of the mathematical analysis 
presented in this work: 
      The function 𝑐 ∈ 𝒵 is a continuous and bounded function defined over the entire interval [0,∞). 
For each index 𝑖 = 1,2, the function 𝑔𝑖 exhibits continuity with respect to the variable 𝜏 and satisfies 

a time-attenuating Lipschitz condition with an associated constant 𝐿𝑖 : 

|𝑔𝑖(𝜏, 𝜎, 𝑧1) − 𝑔𝑖(𝜏, 𝜎, 𝑧2)| ≤
𝐿𝑖

(1 + 𝜏)(1 + 𝜎)
|𝑧1 − 𝑧2|. 

The nonlinear terms are uniformly bounded, subject to the following inequality: 

|𝑔𝑖(𝜏, 𝜎, 𝑧)| ≤
𝑀𝑖

(1 + 𝜏)(1 + 𝜎)
, ∀𝜏, 𝜎 ∈ [0,∞), ∀𝑧 ∈ ℝ. 

The following supremum condition is required to hold across all-natural numbers: 

sup
ℓ∈ℕ

 (‖𝑐‖ℓ +
𝑀1𝑀2

𝑒2
) < ∞. 

Theorem (Leray-Schauder Alternative [13]). Let 𝒯 be a contraction mapping defined on a closed      

Subset 𝒲 ⊂ 𝒵, and suppose that the image set 𝒯(𝒲) is bounded. Then one of the following 
mutually exclusive statements must hold: 
      The operator 𝒯 possesses a unique fixed point within 𝒲, or ⁡ There exist a scalar 𝜆 ∈ (0,1), a 
natural number ℓ ∈ ℕ, and a function 𝑢 ∈ 𝜕𝒲ℓ such that the following condition is satisfied: 

‖𝑢 − 𝜆𝒯(𝑢)‖ℓ = 0. 
Main Result 
Formulation and Operator Continuity.  
     The central concern of this investigation is the nonlinear functional integral equation with a 
product structure, previously introduced as: 
 

𝑧(𝜏) = 𝑐(𝜏) + (∫  
𝜏

0

 𝑔1(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎) (∫  
𝜏

0

 𝑔2(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎) , 𝜏 ∈ [0,∞). (2) 

 
     In this context, 𝑐: [0,∞) → ℝ is a continuous function, and the functions 𝑔𝑖: [0,∞)2 × ℝ → ℝ for 

𝑖 = 1,2 are given functions that satisfy the comprehensive assumptions (A1)-(A4). 
An associated nonlinear operator 𝒯:𝒵 → 𝒵 is defined as follows: 
 

𝒯(𝑧)(𝜏) = 𝑐(𝜏) + (∫  
𝜏

0

 𝑔1(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎) (∫  
𝜏

0

 𝑔2(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎) . (3) 

 
Lemma 1 (Continuity of the Operator). Given that the assumptions (A1)-(A4) hold, the operator 

𝒯:𝒵 → 𝒵 is well-defined and demonstrates continuity within the Fréchet topological structure. 

Proof. To establish the well-definedness of the operator, it must be verified that for an arbitrary function 

𝑧 ∈ 𝒵, the resulting function 𝒯(𝑧) maintains continuity on [0,∞). Let an arbitrary point 𝜏0 ≥ 0 be selected. 

The difference |𝒯(𝑧)(𝜏) − 𝒯(𝑧)(𝜏0)| can be bounded from above by the following expression: 

|𝒯(𝑧)(𝜏) − 𝒯(𝑧)(𝜏0)| ≤ |𝑐(𝜏) − 𝑐(𝜏0)| + |(∏  

2

𝑖=1

 𝒥𝑖(𝜏)) − (∏  

2

𝑖=1

 𝒥𝑖(𝜏0))|, 

 
 

where 𝒥𝑖(𝜏) = ∫  
𝜏

0
𝑔𝑖(𝜏, 𝜎, 𝑧(𝜎))𝑑𝜎. Assumption (A1) ensures that the function 𝑐 is continuous. For the 

product term, the following inequality can be employed: 
 

|∏⁡𝒥𝑖(𝜏) −∏⁡𝒥𝑖(𝜏0)| ≤∑  

2

𝑗=1

|𝒥𝑗(𝜏) − 𝒥𝑗(𝜏0)|∏  

𝑘≠𝑗

sup
𝜏′∈[0,∞)

 |𝒥𝑘(𝜏
′)|. 

 

     By applying assumption (A3) and considering the integral bound ∫  
𝜏

0

𝑑𝜎

(1+𝜎)
= ln⁡(1 + 𝜏), the integral 

terms are bounded as follows: 
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|𝒥𝑖(𝜏)| ≤ 𝑀𝑖

ln⁡(1 + 𝜏)

1 + 𝜏
≤ 𝑀𝑖𝑒

−1. 

 
     To demonstrate the continuity of 𝒥𝑖(𝜏), one observes that the integrand 𝑔𝑖(𝜏, 𝜎, 𝑧(𝜎)) is 

continuous with respect to 𝜏 for a fixed 𝜎 (by (A2)). It is also dominated by the integrable function 
𝑀𝑖

(1+𝜎)2
 for 𝜎 ∈ [0, 𝜏] and for 𝜏 within any neighborhood of 𝜏0 (as a consequence of (A3)). 

Consequently, an application of the 
     Dominated Convergence Theorem guarantees the continuity of 𝒥𝑖(𝜏) at 𝜏0. This line of 

reasoning leads to the conclusion that the operator output 𝒯(𝑧) is a continuous function. 

     To prove continuity in the Fréchet topology, for each ℓ ∈ ℕ, continuity must be established with 

respect to the seminorm ‖ ⋅ ‖ℓ. Let the sequence of functions {𝑧𝑘} converge to 𝑧 in 𝒵, which is 
equivalent to uniform convergence on every compact interval [0, ℓ]. One may then consider the 

difference ‖𝒯(𝑧𝑘) − 𝒯(𝑧)‖ℓ, which is bounded by: 
 
 

‖𝒯(𝑧𝑘) − 𝒯(𝑧)‖ℓ ≤ ‖𝑐 − 𝑐‖ℓ + ‖(∏⁡𝒥𝑖(𝑧𝑘)) − (∏⁡𝒥𝑖(𝑧))‖
ℓ

 

 
 
The product term satisfies the following bound: 
 

‖(∏⁡𝒥𝑖(𝑧𝑘)) − (∏⁡𝒥𝑖(𝑧))‖
ℓ

≤∑  

2

𝑗=1

‖𝒥𝑗(𝑧𝑘) − 𝒥𝑗(𝑧)‖ℓ∏ 

𝑚≠𝑗

sup
𝜏∈[0,ℓ]

 |𝒥𝑚(𝑧𝑘(𝜏))| 

 
 

     Utilizing assumptions (A2) and (A3) and noting that for 𝜏 ∈ [0, ℓ],
ln⁡(1+𝜏)

1+𝜏
≤ 𝑒−1, one can bound 

the difference between the integral terms: 
 

|𝒥𝑗(𝑧𝑘)(𝜏) − 𝒥𝑗(𝑧)(𝜏)| ≤ ∫  
𝜏

0

𝐿𝑗

(1+𝜏)(1+𝜎)
|𝑧𝑘(𝜎) − 𝑧(𝜎)|𝑑𝜎 ≤ 𝐿𝑗

ln⁡(1+𝜏)

1+𝜏
‖𝑧𝑘 − 𝑧‖ℓ ≤ 𝐿𝑗𝑒

−1‖𝑧𝑘 − 𝑧‖ℓ. 

 

As 𝑘 → ∞, it follows that ‖𝑧𝑘 − 𝑧‖ℓ → 0, which in turn implies ‖𝒥𝑗(𝑧𝑘) − 𝒥𝑗(𝑧)‖ℓ → 0. Given that the 

supremum of the integral terms, sup
𝜏∈[0,ℓ]

 |𝒥𝑚(𝑧𝑘(𝜏))|, is bounded by 𝑀𝑚𝑒
−1, it is therefore 

established that ‖𝒯(𝑧𝑘) − 𝒯(𝑧)‖ℓ → 0 as 𝑘 → ∞. 

Lemma 2 (Global Solution via Sequential Contraction). Suppose that the operator 𝒯 fulfills both 
the local contraction property (i) and the solution consistency property (ii) from Definition 2.2. Under 
these conditions, the sequence {𝑧ℓ} of fixed points obtained on the finite intervals [0, ℓ] converges 
uniformly on all compact subsets of [0,∞) to a global solution 𝑧 ∈ 𝒵. 

Proof. By virtue of property (i), for each positive integer ℓ, there exists a unique fixed point 𝑧ℓ ∈
𝐶([0, ℓ]) that satisfies the relationship 𝑧ℓ = 𝒯(𝑧ℓ). The solution consistency condition (ii) provides 

the compatibility relation 𝑧ℓ|[0,ℓ′] = 𝑧ℓ′ for all ℓ′ < ℓ. This inherent consistency enables the definition 

of a global function 𝑧: [0,∞) → ℝ by setting 𝑧(𝜏) = 𝑧ℓ(𝜏) for any ℓ > 𝜏. The function 𝑧 is well-defined 

and continuous on [0,∞) since its restriction to any compact interval [0, ℓ] is continuous. 

Furthermore, for any 𝜏 ≥ 0, by selecting an integer ℓ > 𝜏, one has 𝑧(𝜏) = 𝑧ℓ(𝜏) = 𝒯(𝑧ℓ)(𝜏) =
𝒯(𝑧)(𝜏), as the operator 𝒯 depends solely on the values of its argument up to 𝜏, and 𝑧(𝜎) = 𝑧ℓ(𝜎) 
for all 𝜎 ∈ [0, 𝜏]. Consequently, it is demonstrated that 𝑧 is a fixed point of 𝒯 in the space 𝒵. 

     To substantiate that the sequence {𝑧ℓ} converges to 𝑧 uniformly on any compact interval [0, ℓ′], 

it is sufficient to note that for any ℓ > ℓ′, the restriction 𝑧ℓ|[0,ℓ′] is identical to 𝑧ℓ′ due to the 

consistency property. This implies that on the interval [0, ℓ′], the sequence {𝑧ℓ} becomes constant 

for all ℓ > ℓ′ and is equal to 𝑧ℓ′ = 𝑧|[0,ℓ′]. As a result, the convergence is uniform on any compact 

interval of interest. 

Theorem (Existence and Uniqueness). Assuming that 𝑐 ∈ 𝒵 and conditions (A1)-(A4) are fulfilled, 

if the contraction parameter 𝜅:= (𝐿1𝑀2 +𝑀1𝐿2) ⋅ 𝑒
−2 < 1, then: 
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The operator 𝒯 defined in (3) constitutes a sequential contraction (as per Definition 2.2). The 

functional equation (2) possesses a unique solution within the space 𝒵. 

Proof. First, it must be established that the operator 𝒯 satisfies the sequential contraction 

properties. 

Let 𝑧1, 𝑧2 ∈ 𝒵 be arbitrary functions and fix a value 𝜏 ∈ [0, ℓ]. The difference |𝒯(𝑧1)(𝜏) − 𝒯(𝑧2)(𝜏)| 

may be estimated by adding and subtracting appropriate terms: 

|𝒯(𝑧1)(𝜏) − 𝒯(𝑧2)(𝜏)|⁡≤ |∫  
𝜏

0

 𝑔1(𝜏, 𝜎, 𝑧1(𝜎))𝑑𝜎| ⋅ |∫  
𝜏

0

  [𝑔2(𝜏, 𝜎, 𝑧1(𝜎)) − 𝑔2(𝜏, 𝜎, 𝑧2(𝜎))]𝑑𝜎|

⁡+ |∫  
𝜏

0

  [𝑔1(𝜏, 𝜎, 𝑧1(𝜎)) − 𝑔1(𝜏, 𝜎, 𝑧2(𝜎))]𝑑𝜎| ⋅ |∫  
𝜏

0

 𝑔2(𝜏, 𝜎, 𝑧2(𝜎))𝑑𝜎|

 

Upon applying the boundedness (A3) and Lipschitz (A2) conditions, and using the bound 
‖𝑧1 − 𝑧2‖ℓ for the seminorm on [0, ℓ], the inequality becomes: 

⁡≤ (∫  
𝜏

0

 
𝑀1

(1 + 𝜏)(1 + 𝜎)
𝑑𝜎) ⋅ (∫  

𝜏

0

 
𝐿2

(1 + 𝜏)(1 + 𝜎)
‖𝑧1 − 𝑧2‖ℓ𝑑𝜎)

⁡+(∫  
𝜏

0

 
𝐿1

(1 + 𝜏)(1 + 𝜎)
‖𝑧1 − 𝑧2‖ℓ𝑑𝜎) ⋅ (∫  

𝜏

0

 
𝑀2

(1 + 𝜏)(1 + 𝜎)
𝑑𝜎)

⁡= (𝑀1

ln⁡(1 + 𝜏)

1 + 𝜏
) (𝐿2

ln⁡(1 + 𝜏)

1 + 𝜏
‖𝑧1 − 𝑧2‖ℓ)

⁡+ (𝐿1
ln⁡(1 + 𝜏)

1 + 𝜏
‖𝑧1 − 𝑧2‖ℓ) (𝑀2

ln⁡(1 + 𝜏)

1 + 𝜏
)

⁡= (𝑀1𝐿2 + 𝐿1𝑀2)
[ln⁡(1 + 𝜏)]2

(1 + 𝜏)2
‖𝑧1 − 𝑧2‖ℓ

 

The next step is to determine the maximum value of the function 𝜁(𝜏) =
ln⁡(1+𝜏)

1+𝜏
 for 𝜏 ≥ 0. 

Differentiation of this function yields: 

𝜁′(𝜏) =
(1 + 𝜏) ⋅

1
1 + 𝜏

− ln⁡(1 + 𝜏) ⋅ 1

(1 + 𝜏)2
=
1 − ln⁡(1 + 𝜏)

(1 + 𝜏)2
. 

Setting 𝜁′(𝜏) = 0 provides the condition ln⁡(1 + 𝜏) = 1, which implies that the critical point occurs 

at 𝜏 = 𝑒 − 1. The second derivative confirms that this point is a maximum: 

𝜁′′(𝜏) =
−3 + 2ln⁡(1 + 𝜏)

(1 + 𝜏)3
. 

At the point 𝜏 = 𝑒 − 1, 𝜁′′(𝑒 − 1) = −1/𝑒3 < 0, which confirms a global maximum. Consequently, 
the global maximum value is 𝜁(𝑒 − 1) = 𝑒−1. From this reasoning, it follows that: 

[ln⁡(1 + 𝜏)]2

(1 + 𝜏)2
≤ 𝑒−2⁡∀𝜏 ≥ 0 

By substituting this bound back into the estimation, it is found that: 
|𝒯(𝑧1)(𝜏) − 𝒯(𝑧2)(𝜏)| ≤ (𝑀1𝐿2 + 𝐿1𝑀2) ⋅ 𝑒

−2‖𝑧1 − 𝑧2‖ℓ = 𝜅‖𝑧1 − 𝑧2‖ℓ 
     Taking the supremum over 𝜏 ∈ [0, ℓ] yields ‖𝒯(𝑧1) − 𝒯(𝑧2)‖ℓ ≤ 𝜅‖𝑧1 − 𝑧2‖ℓ. Since the 

condition 𝜅 < 1 is given, the operator 𝒯 is a contraction on (𝐶([0, ℓ]), ‖ ⋅ ‖ℓ) for each integer ℓ. 

Let 𝑧ℓ be the unique solution to 𝑧ℓ = 𝒯(𝑧ℓ) on the interval [0, ℓ], and let 𝑧ℓ′ be the solution on 
[0, ℓ′] for ℓ′ < ℓ. The function 𝑧ℓ|[0,ℓ′] represents the restriction of 𝑧ℓ to the smaller interval [0, ℓ′]. 

For any 𝜏 ∈ [0, ℓ′], the following expression holds: 
 

𝑧ℓ|[0,ℓ′](𝜏) = 𝑧ℓ(𝜏) = 𝒯(𝑧ℓ)(𝜏) = 𝑐(𝜏) + (∫  
𝜏

0

 𝑔1(𝜏, 𝜎, 𝑧ℓ(𝜎))𝑑𝜎) (∫  
𝜏

0

 𝑔2(𝜏, 𝜎, 𝑧ℓ(𝜎))𝑑𝜎) 

 
Since the integrals depend only on the values of 𝑧ℓ(𝜎) for 𝜎 ∈ [0, 𝜏] ⊂ [0, ℓ′], this may be 
expressed as: 
 

𝑧ℓ|[0,ℓ′](𝜏) = 𝒯 (𝑧ℓ|[0,ℓ′]) (𝜏). 

 
     This demonstrates that 𝑧ℓ|[0,ℓ′] is a fixed point of the operator 𝒯 within the space 𝐶([0, ℓ′]). Given 

that the Banach fixed-point theorem ensures a unique fixed point in this space, it must be the case 

that 𝑧ℓ|[0,ℓ′] = 𝑧ℓ′. This reasoning establishes the solution consistency property. 
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     As it has been proven that 𝒯 satisfies both the local contraction and the solution consistency 
properties, Lemma guarantees the existence of a global solution 𝑧 ∈ 𝒵 to the equation 𝑧 = 𝒯(𝑧). 
     To demonstrate uniqueness, an assumption can be made, for the sake of contradiction, that 𝑧𝑎 

and 𝑧𝑏 are two distinct global solutions within 𝒵. This implies that for any ℓ ∈ ℕ, their respective 

restrictions 𝑧𝑎|[0,ℓ] and 𝑧𝑏|[0,ℓ] are both fixed points of 𝒯 within the Banach space 𝐶([0, ℓ]). The 

uniqueness of the fixed point in this space, as guaranteed by the Banach fixed-point theorem, 

implies that 𝑧𝑎|[0,ℓ] = 𝑧𝑏|[0,ℓ]. Since this equality holds for all ℓ, it must be that 𝑧𝑎(𝜏) = 𝑧𝑏(𝜏) for all 

𝜏 ≥ 0, which contradicts the initial assumption that they are distinct solutions.  

Corollary (Fractional Extension with Mittag-Leffler Kernels). Consider a fractional integral 

equation with inherent memory effects: 

𝑧(𝜏) = 𝑐(𝜏) +∏  

2

𝑖=1

 (∫  
𝜏

0

 
𝐸𝛼𝑖,1(−𝜆𝑖(𝜏 − 𝜎)𝛼𝑖)

(1 + 𝜏)(1 + 𝜎)
𝑔𝑖(𝜎, 𝑧(𝜎))𝑑𝜎) (4) 

where 𝐸𝛼𝑖,1 represents the Mittag-Leffler function. It can be shown that Theorem holds, provided 

that the modified contraction condition. 

𝜅𝛼: = 𝜅 ⋅ max
𝑖=1,2

 sup
𝜏≥0

 (
|∫  

𝜏

0
 𝐸𝛼𝑖,1(−𝜆𝑖(𝜏 − 𝜎)𝛼𝑖)

𝑑𝜎
1 + 𝜎

|

1 + 𝜏
) < 1 

 
is satisfied, where 𝜅 is defined as in Theorem. A sufficient condition for this is 𝜅𝛼: = 𝜅 ⋅ max

𝑖=1,2
  ∣

𝐸𝛼𝑖,1(−𝜆𝑖(𝑒 − 1) ⁡𝛼𝑖) ∣< 1, assuming that the Mittag-Leffler function's maximum value is attained 

near the critical point of the logarithmic weight. 

Comprehensive Application: A Nonlinear Heat Transfer Model 
A physically motivated heat transfer process that includes nonlinear dissipation and memory is 
considered here. The model can be expressed as: 
 

𝑧(𝜏) = 𝑒−𝜏 + (∫  
𝜏

0

 
sin⁡(𝑧(𝜎))

𝑒𝜏+𝜎
𝑑𝜎) (∫  

𝜏

0

 
arctan⁡(𝑧(𝜎))

𝑒𝜏+𝜎
𝑑𝜎) , 𝜏 ≥ 0 (5) 

 

     In this formulation, the term 𝑒−𝜏 serves as a representation of ambient heat loss, the term 
sin⁡(𝑧(𝜎)) captures oscillatory thermal interactions, and the term arctan⁡(𝑧(𝜎)) models flux 

saturation. The kernel 𝑒−(𝜏+𝜎) signifies an exponential attenuation of historical contributions over 
time. 
Verification of Assumptions. The first function, sin⁡(𝑧), has a Lipschitz constant of 1, as the Mean 

Value Theorem gives |sin⁡(𝑧𝑎) − sin⁡(𝑧𝑏)| ≤ |𝑧𝑎 − 𝑧𝑏|. Similarly, for the second function, 

arctan⁡(𝑧), its derivative is 
1

1+𝑧2
, which is bounded by 1. Consequently, one obtains the Lipschitz 

constants 𝐿1 = 1 and 𝐿2 = 1. For the nonlinear terms, the following uniform bounds are established: 

 

|
sin⁡(𝑧)

𝑒𝜏+𝜎
| ≤

1

𝑒𝜏+𝜎
≤

1

(1 + 𝜏)(1 + 𝜎)
 

 

And 

 

|
arctan⁡(𝑧)

𝑒𝜏+𝜎
| ≤

𝜋/2

𝑒𝜏+𝜎
≤

𝜋/2

(1 + 𝜏)(1 + 𝜎)
 

 

 

Thus, the uniform bounds are found to be 𝑀1 = 1 and 𝑀2 = 𝜋/2 ≈ 1.5708. 

Sequential contraction parameter: The parameter 𝜅 is computed as: 
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𝜅 = (1 ⋅
𝜋

2
+ 1 ⋅ 1) ⋅

1

𝑒2
≈ (1.5708 + 1) ⋅ 0.1353 ≈ 0.348 < 1 

 
     Since all the required assumptions are fully met, Theorem guarantees the existence of a unique 
global solution for equation (5). 
Fractional Extension to Viscoelastic Materials.  
     The model is now extended to a fractional form, applicable for viscoelastic materials that exhibit 
power-law memory: 
 
 

𝑧(𝜏) = 𝑒−𝜏 + (∫  
𝜏

0

 
𝐸0.8,1(−(𝜏 − 𝜎)0.8)

𝑒𝜏+𝜎
sin⁡(𝑧(𝜎))𝑑𝜎) (∫  

𝜏

0

 
𝐸0.8,1(−(𝜏 − 𝜎)0.8)

𝑒𝜏+𝜎
arctan⁡(𝑧(𝜎))𝑑𝜎) (6) 

 
The modified contraction parameter in this case incorporates the decay characteristic of the 
MittagLeffler function. By applying the sufficient condition from the corollary, it is found that: 
 

𝜅0.8 = 𝜅 ⋅ |𝐸0.8,1(−(𝑒 − 1)0.8)| ≈ 0.348 ⋅ 0.487 ≈ 0.169 < 1 

 
     This result confirms that the uniqueness of the solution is preserved, in accordance with the 
findings of Corollary. 
Conclusion 
     This academic paper has successfully developed a comprehensive and robust mathematical 
paradigm for the resolution of nonlinear functional integral equations within the topological 
framework of Fréchet spaces. A novel logarithmically weighted 𝜅-contraction construct was 
introduced, which systematically aligns Lipschitz constants, nonlinear bounds, and a seminorm 
decay factor to guarantee consistent convergence across all seminorms simultaneously. The 
rigorous derivation of the logarithmic decay factor, which precisely demonstrates that the 

expression 
[ln⁡(1+𝜏)]2

(1+𝜏)2
 is bounded by 𝑒−2, coupled with a proof of operator continuity (Lemma), serves 

to complete the theoretical foundations. From this perspective, the solution defined as 𝑧(𝜏) =
lim
ℓ→∞

 𝑧ℓ(𝜏) is now fully justified as a global solution within the space 𝒵. 

     Furthermore, it was demonstrated that the 𝜅-contraction framework can be naturally extended 
to incorporate Mittag-Leffler kernels, thereby providing a unified solution theory for equations that 
model complex memory effects in various physical systems. The provided heat transfer case study 
serves as a rigorous validation of this theoretical paradigm, demonstrating meticulous adherence 
to all mathematical assumptions and confirming the concrete applicability of the methodology to 
real-world dynamical systems characterized by hereditary memory.  
     By bridging abstract principles of functional analysis with practical mathematical modeling, this 
work makes a significant contribution to the analytical toolkit available for studying nonlinear 
phenomena in engineering and physics. The results conclusively establish that analytical 
techniques developed within the more restrictive context of finite-dimensional spaces can be 
rigorously and successfully extended to infinite-dimensional spaces while maintaining complete 
mathematical integrity. This opens up new avenues for future research into complex systems with 
hereditary characteristics. 
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