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Abstract:  
This paper introduces a robust Bayesian framework for image denoising, designed to address the 
limitations of traditional local regularization methods. The approach is centered on a novel Joint 
Probabilistic Prior that synergistically integrates a local Markov Random Field (MRF) prior, which 
enforces smoothness, with a non-local prior derived from the Non-Local Means (NLM) principle, which 
preserves structural integrity. By combining these two complementary forces within a single energy 
function, the model can effectively suppress White Gaussian Noise while simultaneously preserving 
sharp edges and fine-grained textures. The optimal denoised image is estimated by minimizing the 
posterior energy function using a Maximum a Posteriori (MAP) approach, solved efficiently via a 
gradient descent algorithm. We conduct a comprehensive comparative analysis, evaluating our model 
against both a conventional MRF-only Bayesian model and the state-of-the-art BM3D algorithm across 
a wide spectrum of noise levels (σ=10 to 80). The results are conclusive: the proposed Joint Prior Model 
consistently and overwhelmingly outperforms the MRF-only, achieving, for instance, a remarkable 
+10.47 dB gain in PSNR at σ=60. Furthermore, the proposed model demonstrates highly competitive 
performance against BM3D, particularly in high-noise levels, validating the efficacy and robustness of 
the proposed framework. These findings establish the joint prior approach as a powerful and principled 
solution for high-fidelity image denoising.  
 
Keywords: Image Denoising, Bayesian Inference, Joint Prior Model, Non-Local Prior, Markov Random 
Field (MRF). 

 الملخص 
متينًا لمعالجة ضوضاء الصور، صُمّم لمعالجة أوجه القصور الكامنة في أساليب التنظيم المحلي   يقدّم هذا البحث إطارًا بايزيًا

على   المقترح  النهج  قبليالتقليدية. يرتكز  القبليدمج بشكل تكاملي بينيمشترك    احتمال  المبني على    ، الاحتمال  المحلي 

 غير المحلي المشتق من مبدأ  ة، والاحتمال القبليدرجة من النعوميفرض    ، والذي(MRF) الماركوفيةالحقول العشوائية  

ومن خلال الجمع بين هذين العاملين المتكاملين  .الذي يحافظ على البنية الهيكلية للصورةو ،(NLM) الوسائل غير المحلية 

لى الحواف  بفاعلية، مع الحفاظ في الوقت ذاته ع   البيضاء،ضمن دالة طاقة واحدة، يصبح بالإمكان كبح الضوضاء الغاوسية  

دالة طاقة   تقليل  المنقّاة من الضوضاء عن طريق  الصورة  تقدير  يتم  الدقيقة للصور.  الخلفي الحادة والتفاصيل    الاحتمال 

أجرينا تحليلًا مقارنًا    دلق  .التدرّجي والتي تحُل بكفاءة عبر خوارزمية الانحدار  الأعظم    الخلفي  باستخدام مقاربة الاحتمال

فقط، وخوارزمية المطابقة القطاعية   MRF شاملًا، حيث تم تقييم النموذج المقترح مقابل كل من نموذج بايزي قائم على

https://najsp.com/index.php/home/index
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الثلاثي الأبعاد النتائج   وجاءت) .80إلى   (σ=10 المتقدمة، وذلك عبر نطاق واسع من مستويات الضوضاء والترشيح 

النموذ   ،حاسمة المقترح باستمرار وبفارق كبير على نموذجفقد تفوّق  المشترك  المثال   MRF ج  فقط، محققًا على سبيل 

علاوة على ذلك، أظهر النموذج المقترح أداءً تنافسيًا   .σ=60 عند PSNR ديسيبل في قيمة 10.47+مكسبًا ملحوظًا قدره  

العالية، مما يؤكد فعالية ، وخصوصًا عنالقطاعية والترشيح ثلاثي الأبعاد بالمطابقةللغاية مقارنة   د مستويات الضوضاء 

كحل قوي وذو أسس منهجية لمعالجة  النهج الاحتمالي القبلي المشترك  وترُسّخ هذه النتائج مكانة    .ومتانة الإطار المقترح

 . ضوضاء الصور بدقة عالية
 

  المحلي،غير    الاحتمال القبلي  القبلي المشترك،تنقية الصور من الضوضاء، الاستدلال البايزي، النموذج   :الكلمات المفتاحية

 .ل ماركوف العشوائيقح

Introduction 
     Image denoising has long been recognized as a fundamental problem in image processing, aiming 
to reconstruct high-quality images from data corrupted by noise during acquisition, transmission, or 
storage. Such noise not only reduces the visual quality of images but also negatively impacts 
subsequent tasks such as analysis and recognition [1]. Early solutions relied on local filtering methods 
such as Gaussian smoothing and median filtering. Although computationally efficient, these methods 
often introduced undesirable artifacts, including edge blurring and the loss of fine structural details as 
in [2-4]. A significant methodological shift was introduced with Bayesian inference frameworks, which 
provided a probabilistic foundation for image restoration by modeling the posterior distribution of the 
clean image given its noisy observation. This paradigm was pioneered by [5], and later refined through 
the contributions of [6] and [7,8], subsequently extended its application to broader Bayesian modeling 
contexts, as reviewed by [9]. In parallel, Markov Random Fields (MRFs) emerged as effective priors for 
enforcing spatial smoothness while preserving discontinuities where necessary [10-16]. 
     Another breakthrough came with the introduction of the Non-Local Means (NLM) filter, which 
exploited self-similarity across the image to preserve textures and repeated patterns more effectively 
than local approaches [17]. Complementing this, the bilateral filter. provided edge-preserving smoothing 
and became widely adopted as a post-processing tool. Subsequent research explored hybrid 
approaches combining Bayesian inference, MRFs, and NLM priors, supported by adaptive weighting 
strategies to balance smoothness with detail preservation using local statistical measures [18].  
     Meanwhile, the BM3D algorithm, established itself as a strong benchmark for classical denoising 
performance. More recently, despite the success of deep learning, classical model-based techniques 
remain highly relevant due to their interpretability, robustness, and lower computational demands. 
Building on this rich history, this work proposes a unified Bayesian framework that integrates MRF and 
NLM priors. We introduce a carefully tuned weighting scheme to create a joint prior that robustly 
suppresses noise without compromising perceptual fidelity. The proposed method is evaluated using 
the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Root Mean Square Error 
(RMSE), and is benchmarked against BM3D, demonstrating competitive performance and strong edge 
preservation across various Gaussian noise levels. 
Material and methods 
     Image denoising within a Bayesian framework aims to estimate the true, clean image from its noisy 
observation by maximizing the posterior probability. This approach provides a robust statistical 
foundation for incorporating prior knowledge about image properties. The proposed method leverages 
this framework by combining complementary prior models to achieve superior denoising performance. 
     We consider the common scenario where a clean image, denoted as 𝑥, is corrupted by additive 

white Gaussian noise (AWGN) to produce an observed noisy image 𝑦. The degradation process can 
be modeled as the following equation: 
 

𝑦 = 𝑥 + 𝑛 (1) 
 
where 𝑛 represents the additive Gaussian noise, assumed to be independent and identically 

distributed (i.i.d.) with zero mean and variance 𝜎𝑛
2,            i.e., 𝒏 ∼ 𝒩(0, 𝜎𝑛

2𝑰). 
Bayesian Inference and MAP Estimation 
     According to Bayes' theorem, the posterior probability of the clean image 𝑥 given the noisy 

observation 𝑦 is proportional to the product of the likelihood function 𝑝(𝑦|𝑥) and the prior probability 

𝑝(𝑥) of the image: 
 

𝑝(𝑥|𝑦) ∝ 𝑝(𝑦|𝑥)𝑝(𝑥) (2) 
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     The objective is to find the Maximum a Posteriori (MAP) estimate 𝑥̂ of the clean image, which 
maximizes the posterior probability: 
 

𝑥̂ = arg⁡max
𝑥
 𝑝(𝑥|𝑦) (3) 

     By taking the negative logarithm of the posterior probability, the maximization problem in Eq(3) can 
be transformed into a minimization problem of an energy function: 

𝑥̂ = arg⁡ min
𝑥
 {−log⁡ 𝑝(𝑦|𝑥) − log⁡ 𝑝(𝑥)} (4) 

     Notice that Eq (4) decomposes the problem into two main terms: the data fidelity term derived from 
the likelihood 𝑝(𝑦|𝑥) and the regularization term derived from the prior 𝑝(𝑥). 
     The likelihood function 𝑝(𝑦|𝑥) quantifies the probability of observing the noisy image 𝑦 given a 

clean image 𝑥. Assuming AWGN, the likelihood follows a Gaussian distribution expressed as: 
 

𝑝(𝑦|𝑥) = (
1

2𝜋𝜎𝑛
2
)
𝑁/2

exp⁡ (−
1

2𝜎𝑛
2
‖𝑦 − 𝑥‖2) (5) 

 
where 𝑁 is the total number of pixels in the image. Taking the negative logarithm of Eq (5) yields the 
data fidelity term: 
 

−log⁡ 𝑝(𝑦|𝑥) =
1

2𝜎2
‖𝑦 − 𝑥‖2 + const  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑑𝑎𝑡𝑎(𝐱, 𝐲) =
1

2𝜎𝑛
2
‖𝐲 − 𝐱‖2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6)⁡ 

      
     The prior probability 𝑝(𝑥) encodes our a priori knowledge about the statistical properties of natural 
images. The  framework utilizes a novel joint prior combining local and non-local regularization. The 
MRF prior model local spatial dependencies, encouraging smoothness in homogeneous regions while 
preserving discontinuities. It is typically formulated as a Gibbs distribution: 
 

𝑝MRF(𝑥) =
1

𝑍
exp⁡ (−𝛼 ∑  

(𝑖,𝑗)∈𝒩

 𝜙(𝑥𝑖 , 𝑥𝑗)) (7) 

 
where 𝑍 is a normalization constant, 𝛼 controls the prior strength, and 𝜙 is a potential function 

penalizing differences between neighboring pixels 𝑥𝑖 and 𝑥𝑗. Usually, the quadratic potential is a 

common choice: 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜙(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)
2  

 
leading to the energy term: 
 

𝐸MRF(𝑥) = 𝜆MRF ∑  

(𝑖,𝑗)∈𝒩

  (𝑥𝑖 − 𝑥𝑗)
2 (8) 

 
where 𝜆MRF is the regularization weight. 
     The Non-Local Means (NLM) prior leverages the inherent self-similarity of images and asserts that 
similar patches across the image should have similar pixel values [19]. It can be formulated as: 
 

𝐸NLM(𝑥) = 𝜆NLM ∑ 

𝑖

  ∑  

𝑗∈𝒮(𝑖)

 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2 (9) 

 

where 𝜆NLM is the regularization weight, 𝑥𝑖 is the pixel to be denoised, and 𝑥𝑗 are pixels in patches 

similar to the patch centered at 𝑖. The weights 𝑤𝑖𝑗 quantify the similarity between patches centered at 𝑖 

and 𝑗 in the noisy image, computed as: 
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𝑤𝑖𝑗 =
1

𝑍𝑖
exp⁡ (−

‖𝑃𝑖 − 𝑃𝑗‖
2

ℎ2
) (10) 

 

where 𝑃𝑖 and 𝑃𝑗 are patches centered at 𝑖 and 𝑗, respectively, ℎ is a filtering parameter, and 𝑍𝑖 is a 

normalization factor. 
The proposed Joint Prior Model combines the MRF and NLM priors into a single regularization term: 
 

𝐸Prior(𝑥) = 𝐸MRF(𝑥) + 𝐸NLM(𝑥) (11) 
    
     By combining the data fidelity term Eq (6) and the joint prior term Eq (12), the total energy function 
to be minimized for MAP estimation is: 
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸(𝑥) =
1

2𝜎2
‖𝑦 − 𝑥‖2 + 𝐸MRF(𝑥) + 𝐸NLM(𝑥)  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑡𝑜𝑡𝑎𝑙(𝐱) =
1

2𝜎𝑛
2
‖𝐲 − 𝐱‖2 + 𝜆MRF ∑  

(𝑖,𝑗)∈𝒩

  (𝑥𝑖 − 𝑥𝑗)
2 + 𝜆𝑛𝑙𝑚∑ 

𝑖

∑  

𝑗∈𝒩𝑖

𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

      
      To find the optimal 𝐱̂𝑀𝐴𝑃, we employ an iterative optimization algorithm. Specifically, the 

Expectation-Maximization (EM) [20] algorithm can be used to estimate both the latent clean image 𝐱 
and potentially unknown model parameters (e.g., noise variance or prior parameters). Within each M-
step of the EM algorithm, or as a standalone optimization for a fixed set of parameters, an iterative 
gradient descent approach is utilized. Starting with an initial estimate (e.g., the noisy image 𝐲), the 
image is updated iteratively by moving in the direction opposite to the gradient of the energy function, 
as commonly applied in Bayesian image restoration: 
 

𝐱(𝑘+1) = 𝐱(𝑘) − 𝛼∇𝐸𝑡𝑜𝑡𝑎𝑙(𝐱
(𝑘)) 

 

     Here, 𝐱(𝑘) is the current image estimate, 𝛼 is the step size, and ∇𝐸𝑡𝑜𝑡𝑎𝑙(𝐱
(𝑘)) is the gradient of the 

total energy function. This gradient guides the iterative updates, pushing pixels towards a state that 
minimizes the energy, thereby balancing fidelity to the noisy data with adherence to the combined prior 
knowledge. Each iteration refines the image, progressively reducing noise while preserving structural 
integrity. where 𝛼 is the step size (learning rate) and ∇𝐸𝑡𝑜𝑡𝑎𝑙 is the gradient of the total energy function 

with respect to 𝐱. The gradient combines the forces from the data fidelity term (pulling 𝐱 towards 𝐲) and 

the two prior terms (regularizing 𝐱 based on local smoothness and non-local similarity).  
Numerical Experiments 
      The approach was evaluated on a standard grayscale image dataset as illustrated in Figure 1, which 
is commonly used in image processing tasks. The image has 280×196 pixels, explicit dimensions, and 
data type float32, normalized to a range of 0 to 1. Multiple noisy test images (some displayed in Figure. 
1) were created by synthetically adding eight different levels of additive Gaussian noise with varying 
noise standard deviation σ (from 10 to 80) to evaluate the robustness against noise. This controlled 
degradation simulates realistic perturbations and enables quantitative performance comparison. 
Minimization of the energy functions for both models was performed using an iterative gradient descent 
algorithm as described previously. All experiments were conducted using Python 3.8.3 with pertinent 
libraries: NumPy, OpenCV, scikit-image, and Pandas 1.3.3. The quality of denoising was 
comprehensively evaluated using multiple metrics, including PSNR, SSIM, VIF, and RMSE. 
     In convergence behavior, this iterative optimization process progresses over a fixed number of 
iterations (commonly set to 50). However, as demonstrated in the convergence curves in Figure 2, both 
the energy function and the PSNR metric stabilize much earlier, around 18 to 20 iterations. Beyond this 
point, further iterations provide minimal improvement in image quality, indicating convergence. The 
algorithm balances the need to remain faithful to the observed noisy data with enforcing prior 
knowledge, ensuring the restored image is visually plausible and clean according to the joint prior 
model. The success of the proposed Joint Prior model relies heavily on careful tuning of the 
regularization parameters λmrf and λnlm, to strike an optimal balance between noise reduction and detail 
preservation. Through extensive empirical experimentation, we adopted a deliberately imbalanced 
configuration with λmrf =0.15 and λnlm= 2.0. This strategic weighting imposes a clear hierarchy wherein 
the non-local NLM prior, responsible for preserving structural integrity, dominates the local MRF prior, 
encouraging smoothness. In areas of conflicting guidance, such as at sharp edges, the model explicitly 
prioritizes structure preservation over smoothing, effectively addressing the critical challenge of 
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reducing noise without compromising perceptual details, thereby enabling high-fidelity image 
reconstruction. 

 

Figure 1: the original image and Gaussian noisy image for four levels (=20, =30, = 40, =60, 

=80) 

 

 
Figure 2: Convergence curves illustrating PSNR (left) and energy function (right) over iterations for 

baseline MRF and proposed joint MRF-NLM prior models. 

 

Results and discussion 

     The results in Table 1. Demonstrate a significant superiority of the proposed Joint Prior Model over 
the baseline MRF method across all noise levels, confirming the effectiveness of combining local spatial 
consistency (MRF) with non-local similarity information (NLM). This integration allows the model to 
better exploit repeated structures, leading to superior noise suppression while preserving fine details. 
For instance, at σ = 20, the Joint Model achieves a PSNR of 32.94 dB (an 8.81 dB improvement over 

      The Original image                       =20                            =30 

               =40                                  =60                                   =80   
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MRF), a substantial SSIM increase from 0.42 to 0.89, and a VIF gain from 0.331 to 0.496, with RMSE 
significantly reduced from 15.48 to 5.74. Compared to BM3D as a criterion [21], the Joint Model delivers 
competitive results, often approaching BM3D's performance in PSNR and SSIM. 

 
Table 1: Comparative Denoising Performance Across Various Noise Levels 

 
Gaussian 

Noise ration 

 
Method 

 
PSNR (dB)↑ 

 
SSIM↑ 

 
VIF↑ 

 
RMSE↓ 

𝞼=10 

Noisy 28.12 0.58 0.429 10.00 

MRF 30.01 0.67 0.442 8.68 

Joint Prior 
Model 

33.80 0.92 0.548 5.20 

BMD3 38.07 0.95 0.649 3.31 

𝞼=15 

Noisy 24.61 0.51 0.337 14.99 

MRF 26.50 0.51 0.373 12.05 

Joint Prior 
Model 

33.27 0.90 0.518 5.53 

BMD3 36.44 0.94 0.593 3.95 

𝞼=20 

Noisy 22.23 0.35 0.280 19.72 

MRF 24.13 0.42 0.331 15.48 

Joint Prior 
Model 

32.94 0.89 0.496 5.74 

BMD3 35.26 0.92 0.550 4.49 

𝞼=25 

Noisy 20.35 0.28 0.240 24.47 

MRF 22.24 0.35 0. 267 19.69 

Joint Prior 
Model 

32.50 0.89 0.483 6.04 

BMD3 34.21 0.91 0.522 5.09 

𝞼=30 

Noisy 18.84 0.24 0.207 29.13 

MRF 20.71 0.30 0.229 23.50 

Joint Prior 
Model 

31.96 0.89 0.464 6.43 

BMD3 34.92 0.92 0.544 4.66 

𝞼=40 

Noisy 16.56 0.18 0.164 37.85 

MRF 18.46 0.23 0.182 30.46 

Joint Prior 
Model 

30.53 0.88 0.413 7.58 

BMD3 31.41 0.89 0.440 6.98 

𝞼=60 Noisy 13.49 0.12 0.113 53.95 

MRF 15.37 0.15 0.124 43.46 

Joint Prior 
Model 

25.84 0.74 0.270 13.01 

BMD3 28.18 0.85 0.367 10.10 

𝞼=80 Noisy 11.55 0.08 0.083 67,47 

MRF 13.40 0.11 0.091 54.51 

Joint Prior 
Model 

20.63 0.44 0.151 23.72 

BMD3 25.02 0.81 0.300 14.50 

 

     For example, at σ = 25, the Joint Model achieves a PSNR of 32.50 dB versus 34.21 dB for BM3D, 
with nearly identical SSIM values (0.89 and 0.91 respectively). This highlights the model's ability to 
achieve a good balance between visual quality and computational simplicity. The robustness of the 
proposed approach becomes more evident with increasing noise levels. While all methods experience 
performance degradation with higher σ, the Joint Model exhibits a slower rate of decline compared to 
MRF. Even at σ = 40, it maintains a PSNR of 30.53 dB and an SSIM of 0.88, significantly higher than 
MRF's 18.46 dB and 0.23. At σ = 60, the Joint Model shows a PSNR of 25.84 dB (a +10.47 dB 
improvement over MRF) and an SSIM of 0.75, underscoring its ability to leverage non-local similarities 
even in severe noise.  
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     Results at σ = 80 reveal the models' operational limits. While the MRF model becomes practically 
ineffective, the Joint Model still achieves a significant +7.23 dB PSNR improvement over the MRF 
baseline. However, its SSIM sharply drops to 0.45, indicating that extreme noise affects patch similarity 
measurements. BM3D shows greater resilience at this level (SSIM 0.81), suggesting its patch grouping 
strategy provides additional robustness. This gap highlights a promising direction for future research in 
developing more robust similarity metrics or integrating learning-based approaches to guide non-local 
search in highly corrupted images. The qualitative (visual) evaluations illustrated in Figures 3– 6 confirm 
the quantitative results presented in Figures 8 and 9, with the Joint Model producing visually cleaner 
images and better preserving fine details and edges compared to the MRF model, particularly in 
textured regions. This consistency between quantitative and qualitative analyses reinforces the 
proposed model’s effectiveness and robustness across various noise levels. 
  

    

                                                                                     

           

    

  

 

    

                        

(A) (B) (C) 

Figure 3: Visual comparison of denoising results at Gaussian noise level (σ = 

20) for (A) the MRF, the (B) proposed joint prior model, and (C the BMD3 

method 

 

(A) (B) (C) 

Figure 4:  Visual comparison of denoising results at Gaussian noise level (σ = 

30) for(A) the MRF baseline, (B)the proposed joint prior model, and (C) the 

BMD3 method 

 

(A) (B)   

Figure 5: Visual comparison of denoising results at Gaussian noise level (σ = 

40) for (A) the MRF baseline, (B) the proposed joint prior model, and (C) the 

BMD3 method 

 

(C) 
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(A) (B) (C) 

Figure 6: Visual comparison of denoising results at Gaussian noise level (σ = 

60) for(A) the MRF, (B) the proposed joint prior model, and(C) the BMD3 

method 

Figure 7: Variation of PSNR, SSIM, VIF, and RMSE values with noise standard 

deviation (σ) for the three evaluated methods. 

Figure 8: Comparison of PSNR, SSIM, and VIF at selected noise levels (σ = 10 

to 80) for MRF, the proposed joint prior model, and BMD3. 
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Conclusions 
     This study at extreme noise levels solidifies the core thesis of this research. They unequivocally 
demonstrate that the local-only MRF prior is an inadequate model for all but the most trivial denoising 
tasks. The proposed Joint Prior Model, by integrating non-local information, provides a dramatic and 
robust improvement in performance. While its effectiveness begins to wane at the absolute limits of 
signal degradation (σ=80), its ability to function so effectively up to σ=60 and to still outperform the 
baseline so significantly at σ=80 validates it as a powerful and resilient framework. The performance 
gap between our model and BM3D at these extreme levels also clearly outlines a path for future 
research, focusing on enhancing the robustness of the non-local similarity search in highly noisy 
environments. 
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