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Abstract:

This paper introduces a robust Bayesian framework for image denoising, designed to address the
limitations of traditional local regularization methods. The approach is centered on a novel Joint
Probabilistic Prior that synergistically integrates a local Markov Random Field (MRF) prior, which
enforces smoothness, with a non-local prior derived from the Non-Local Means (NLM) principle, which
preserves structural integrity. By combining these two complementary forces within a single energy
function, the model can effectively suppress White Gaussian Noise while simultaneously preserving
sharp edges and fine-grained textures. The optimal denoised image is estimated by minimizing the
posterior energy function using a Maximum a Posteriori (MAP) approach, solved efficiently via a
gradient descent algorithm. We conduct a comprehensive comparative analysis, evaluating our model
against both a conventional MRF-only Bayesian model and the state-of-the-art BM3D algorithm across
a wide spectrum of noise levels (0=10 to 80). The results are conclusive: the proposed Joint Prior Model
consistently and overwhelmingly outperforms the MRF-only, achieving, for instance, a remarkable
+10.47 dB gain in PSNR at 0=60. Furthermore, the proposed model demonstrates highly competitive
performance against BM3D, particularly in high-noise levels, validating the efficacy and robustness of
the proposed framework. These findings establish the joint prior approach as a powerful and principled
solution for high-fidelity image denoising.

Keywords: Image Denoising, Bayesian Inference, Joint Prior Model, Non-Local Prior, Markov Random

Field (MRF).
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Introduction

Image denoising has long been recognized as a fundamental problem in image processing, aiming
to reconstruct high-quality images from data corrupted by noise during acquisition, transmission, or
storage. Such noise not only reduces the visual quality of images but also negatively impacts
subsequent tasks such as analysis and recognition [1]. Early solutions relied on local filtering methods
such as Gaussian smoothing and median filtering. Although computationally efficient, these methods
often introduced undesirable artifacts, including edge blurring and the loss of fine structural details as
in [2-4]. A significant methodological shift was introduced with Bayesian inference frameworks, which
provided a probabilistic foundation for image restoration by modeling the posterior distribution of the
clean image given its noisy observation. This paradigm was pioneered by [5], and later refined through
the contributions of [6] and [7,8], subsequently extended its application to broader Bayesian modeling
contexts, as reviewed by [9]. In parallel, Markov Random Fields (MRFs) emerged as effective priors for
enforcing spatial smoothness while preserving discontinuities where necessary [10-16].

Another breakthrough came with the introduction of the Non-Local Means (NLM) filter, which
exploited self-similarity across the image to preserve textures and repeated patterns more effectively
than local approaches [17]. Complementing this, the bilateral filter. provided edge-preserving smoothing
and became widely adopted as a post-processing tool. Subsequent research explored hybrid
approaches combining Bayesian inference, MRFs, and NLM priors, supported by adaptive weighting
strategies to balance smoothness with detail preservation using local statistical measures [18].

Meanwhile, the BM3D algorithm, established itself as a strong benchmark for classical denoising
performance. More recently, despite the success of deep learning, classical model-based techniques
remain highly relevant due to their interpretability, robustness, and lower computational demands.
Building on this rich history, this work proposes a unified Bayesian framework that integrates MRF and
NLM priors. We introduce a carefully tuned weighting scheme to create a joint prior that robustly
suppresses nhoise without compromising perceptual fidelity. The proposed method is evaluated using
the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Root Mean Square Error
(RMSE), and is benchmarked against BM3D, demonstrating competitive performance and strong edge
preservation across various Gaussian noise levels.

Material and methods

Image denoising within a Bayesian framework aims to estimate the true, clean image from its noisy
observation by maximizing the posterior probability. This approach provides a robust statistical
foundation for incorporating prior knowledge about image properties. The proposed method leverages
this framework by combining complementary prior models to achieve superior denoising performance.

We consider the common scenario where a clean image, denoted as x, is corrupted by additive
white Gaussian noise (AWGN) to produce an observed noisy image y. The degradation process can
be modeled as the following equation:

y=x+n (1)

where n represents the additive Gaussian noise, assumed to be independent and identically
distributed (i.i.d.) with zero mean and variance o2, i.e., n~N(0,02I).
Bayesian Inference and MAP Estimation

According to Bayes' theorem, the posterior probability of the clean image x given the noisy
observation y is proportional to the product of the likelihood function p(y|x) and the prior probability
p(x) of the image:

p(x|y) < p(y[x)p(x) (2)
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The objective is to find the Maximum a Posteriori (MAP) estimate X of the clean image, which
maximizes the posterior probability:

X = arg maxp(x|y) 3
X

By taking the negative logarithm of the posterior probability, the maximization problem in Eq(3) can
be transformed into a minimization problem of an energy function:
% = arg min{~log p(y|x) — log p(x)} 4)
Notice that Eq (4) decomposes the problem into two main terms: the data fidelity term derived from
the likelihood p(y|x) and the regularization term derived from the prior p(x).
The likelihood function p(y|x) quantifies the probability of observing the noisy image y given a
clean image x. Assuming AWGN, the likelihood follows a Gaussian distribution expressed as:

N/2

P00 = (5r) e (~ 5ozl — 21 ©

n
where N is the total number of pixels in the image. Taking the negative logarithm of Eq (5) yields the
data fidelity term:

1
—log p(ylx) = 797 lly — x||? + const

1
Eqara®,y) = 5— lly — x|1? (6)
20

The prior probability p(x) encodes our a priori knowledge about the statistical properties of natural
images. The framework utilizes a novel joint prior combining local and non-local regularization. The
MRF prior model local spatial dependencies, encouraging smoothness in homogeneous regions while
preserving discontinuities. It is typically formulated as a Gibbs distribution:

1
PureCO) =S exp |~ > §xx) @
@@.)HeN

where Z is a normalization constant, a controls the prior strength, and ¢ is a potential function
penalizing differences between neighboring pixels x; and x;. Usually, the quadratic potential is a
common choice:

¢(xitxj) = (x _xj)z

leading to the energy term:

Fure(¥) = Auge ) (= x))? ®
@@HeNV

where Ayre is the regularization weight.
The Non-Local Means (NLM) prior leverages the inherent self-similarity of images and asserts that
similar patches across the image should have similar pixel values [19]. It can be formulated as:

Enem (%) = Anem Z Z wyj (% — x;)? €))

i jes(i)

where Ay v is the regularization weight, x; is the pixel to be denoised, and x; are pixels in patches
similar to the patch centered at i. The weights w;; quantify the similarity between patches centered at i
and j in the noisy image, computed as:
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where P; and P; are patches centered at i and j, respectively, h is a filtering parameter, and Z; is a
normalization factor.
The proposed Joint Prior Model combines the MRF and NLM priors into a single regularization term:

Epyior(x) = Enrr (%) + Enum (%) 11

By combining the data fidelity term Eq (6) and the joint prior term Eq (12), the total energy function
to be minimized for MAP estimation is:

1
E(x) = 252 lly = x|I* + Epre (X)) + Enom(x)

1
Erotar(X) = 557 lly — xII* + Avre § (xr — %)% + Apim E E wi; (x; — x;)? (12)
@Hen i JEN;

To find the optimal X,4p, we employ an iterative optimization algorithm. Specifically, the
Expectation-Maximization (EM) [20] algorithm can be used to estimate both the latent clean image x
and potentially unknown model parameters (e.g., noise variance or prior parameters). Within each M-
step of the EM algorithm, or as a standalone optimization for a fixed set of parameters, an iterative
gradient descent approach is utilized. Starting with an initial estimate (e.g., the noisy image y), the
image is updated iteratively by moving in the direction opposite to the gradient of the energy function,
as commonly applied in Bayesian image restoration:

X(k+1) = X(k) - aVEtotal (X(k))

Here, x® is the current image estimate, «a is the step size, and VE, ., (x%) is the gradient of the
total energy function. This gradient guides the iterative updates, pushing pixels towards a state that
minimizes the energy, thereby balancing fidelity to the noisy data with adherence to the combined prior
knowledge. Each iteration refines the image, progressively reducing noise while preserving structural
integrity. where «a is the step size (learning rate) and VE,,,; is the gradient of the total energy function
with respect to x. The gradient combines the forces from the data fidelity term (pulling x towards y) and
the two prior terms (regularizing x based on local smoothness and non-local similarity).

Numerical Experiments

The approach was evaluated on a standard grayscale image dataset as illustrated in Figure 1, which
is commonly used in image processing tasks. The image has 280x196 pixels, explicit dimensions, and
data type float32, normalized to a range of 0 to 1. Multiple noisy test images (some displayed in Figure.
1) were created by synthetically adding eight different levels of additive Gaussian noise with varying
noise standard deviation o (from 10 to 80) to evaluate the robustness against noise. This controlled
degradation simulates realistic perturbations and enables quantitative performance comparison.
Minimization of the energy functions for both models was performed using an iterative gradient descent
algorithm as described previously. All experiments were conducted using Python 3.8.3 with pertinent
libraries: NumPy, OpenCV, scikit-image, and Pandas 1.3.3. The quality of denoising was
comprehensively evaluated using multiple metrics, including PSNR, SSIM, VIF, and RMSE.

In convergence behavior, this iterative optimization process progresses over a fixed number of
iterations (commonly set to 50). However, as demonstrated in the convergence curves in Figure 2, both
the energy function and the PSNR metric stabilize much earlier, around 18 to 20 iterations. Beyond this
point, further iterations provide minimal improvement in image quality, indicating convergence. The
algorithm balances the need to remain faithful to the observed noisy data with enforcing prior
knowledge, ensuring the restored image is visually plausible and clean according to the joint prior
model. The success of the proposed Joint Prior model relies heavily on careful tuning of the
regularization parameters Amrt and Anim, to strike an optimal balance between noise reduction and detail
preservation. Through extensive empirical experimentation, we adopted a deliberately imbalanced
configuration with Amrt =0.15 and Anm= 2.0. This strategic weighting imposes a clear hierarchy wherein
the non-local NLM prior, responsible for preserving structural integrity, dominates the local MRF prior,
encouraging smoothness. In areas of conflicting guidance, such as at sharp edges, the model explicitly
prioritizes structure preservation over smoothing, effectively addressing the critical challenge of
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reducing noise without compromising perceptual details, thereby enabling high-fidelity image
reconstruction.

0=40 =60 c=80

Figure 1: the original image and Gaussian noisy image for four levels (6=20, =30, 6= 40, 6=60,
6=80)
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Figure 2: Convergence curves illustrating PSNR (left) and energy function (right) over iterations for
baseline MRF and proposed joint MRF-NLM prior models.

Results and discussion

The results in Table 1. Demonstrate a significant superiority of the proposed Joint Prior Model over
the baseline MRF method across all noise levels, confirming the effectiveness of combining local spatial
consistency (MRF) with non-local similarity information (NLM). This integration allows the model to
better exploit repeated structures, leading to superior noise suppression while preserving fine details.
For instance, at g = 20, the Joint Model achieves a PSNR of 32.94 dB (an 8.81 dB improvement over
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MRF), a substantial SSIM increase from 0.42 to 0.89, and a VIF gain from 0.331 to 0.496, with RMSE
significantly reduced from 15.48 to 5.74. Compared to BM3D as a criterion [21], the Joint Model delivers
competitive results, often approaching BM3D's performance in PSNR and SSIM.

Table 1: Comparative Denoising Performance Across Various Noise Levels

Gaussian Method PSNR (dB)?1 SSIM1 VIF?} RMSE|
Noise ration
Noisy 28.12 0.58 0.429 10.00
MRF 30.01 0.67 0.442 8.68
0=10 Joint Prior 33.80 0.92 0.548 5.20
Model
BMD3 38.07 0.95 0.649 3.31
Noisy 24.61 0.51 0.337 14.99
MRF 26.50 0.51 0.373 12.05
o=15 Joint Prior 33.27 0.90 0.518 5.53
Model
BMD3 36.44 0.94 0.593 3.95
Noisy 22.23 0.35 0.280 19.72
MRF 24.13 0.42 0.331 15.48
0=20 Joint Prior 32.94 0.89 0.496 5.74
Model
BMD3 35.26 0.92 0.550 4.49
Noisy 20.35 0.28 0.240 24.47
MRF 22.24 0.35 0. 267 19.69
=25 Joint Prior 32.50 0.89 0.483 6.04
Model
BMD3 34.21 0.91 0.522 5.09
Noisy 18.84 0.24 0.207 29.13
MRF 20.71 0.30 0.229 23.50
=30 Joint Prior 31.96 0.89 0.464 6.43
Model
BMD3 34.92 0.92 0.544 4.66
Noisy 16.56 0.18 0.164 37.85
MRF 18.46 0.23 0.182 30.46
0=40 Joint Prior 30.53 0.88 0.413 7.58
Model
BMD3 31.41 0.89 0.440 6.98
0=60 Noisy 13.49 0.12 0.113 53.95
MRF 15.37 0.15 0.124 43.46
Joint Prior 25.84 0.74 0.270 13.01
Model
BMD3 28.18 0.85 0.367 10.10
0=80 Noisy 11.55 0.08 0.083 67,47
MRF 13.40 0.11 0.091 5451
Joint Prior 20.63 0.44 0.151 23.72
Model
BMD3 25.02 0.81 0.300 14.50

For example, at o = 25, the Joint Model achieves a PSNR of 32.50 dB versus 34.21 dB for BM3D,
with nearly identical SSIM values (0.89 and 0.91 respectively). This highlights the model's ability to
achieve a good balance between visual quality and computational simplicity. The robustness of the
proposed approach becomes more evident with increasing noise levels. While all methods experience
performance degradation with higher o, the Joint Model exhibits a slower rate of decline compared to
MREF. Even at o = 40, it maintains a PSNR of 30.53 dB and an SSIM of 0.88, significantly higher than
MRF's 18.46 dB and 0.23. At o = 60, the Joint Model shows a PSNR of 25.84 dB (a +10.47 dB
improvement over MRF) and an SSIM of 0.75, underscoring its ability to leverage non-local similarities
even in severe noise.
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Results at o = 80 reveal the models' operational limits. While the MRF model becomes practically
ineffective, the Joint Model still achieves a significant +7.23 dB PSNR improvement over the MRF
baseline. However, its SSIM sharply drops to 0.45, indicating that extreme noise affects patch similarity
measurements. BM3D shows greater resilience at this level (SSIM 0.81), suggesting its patch grouping
strategy provides additional robustness. This gap highlights a promising direction for future research in
developing more robust similarity metrics or integrating learning-based approaches to guide non-local
search in highly corrupted images. The qualitative (visual) evaluations illustrated in Figures 3— 6 confirm
the quantitative results presented in Figures 8 and 9, with the Joint Model producing visually cleaner
images and better preserving fine details and edges compared to the MRF model, particularly in
textured regions. This consistency between quantitative and qualitative analyses reinforces the
proposed model’s effectiveness and robustness across various noise levels.

(©)

Figure 3: Visual comparison of denoising results at Gaussian noise level (o =
20) for (A) the MRF, the (B) proposed joint prior model, and (C the BMD3
method

(©

Figure 4: Visual comparison of denoising results at Gaussian noise level (o =
30) for(A) the MRF baseline, (B)the proposed joint prior model, and (C) the
BMD3 method

(A) (B ©)
Figure 5: Visual comparison of denoising results at Gaussian noise level (o =

40) for (A) the MRF baseline, (B) the proposed joint prior model, and (C) the
BMD3 method
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Figure 6: Visual comparison of denoising results at Gaussian noise level (o =
60) for(A) the MRF, (B) the proposed joint prior model, and(C) the BMD3

Figure 7: Variation of PSNR, SSIM, VIF, and RMSE values with noise standard
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Figure 8: Comparison of PSNR, SSIM, and VIF at selected noise levels (o = 10
to 80) for MRF, the proposed joint prior model, and BMD3.
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Conclusions

This study at extreme noise levels solidifies the core thesis of this research. They unequivocally
demonstrate that the local-only MRF prior is an inadequate model for all but the most trivial denoising
tasks. The proposed Joint Prior Model, by integrating non-local information, provides a dramatic and
robust improvement in performance. While its effectiveness begins to wane at the absolute limits of
signal degradation (0=80), its ability to function so effectively up to 6=60 and to still outperform the
baseline so significantly at =80 validates it as a powerful and resilient framework. The performance
gap between our model and BM3D at these extreme levels also clearly outlines a path for future
research, focusing on enhancing the robustness of the non-local similarity search in highly noisy
environments.
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