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Abstract:  
The growing complexity and demands of modern electrical power systems necessitate the integration 
of intelligent technologies to ensure efficiency, resilience, and sustainability. This review 
comprehensively examines the multifaceted applications of Artificial Intelligence (AI) in power system 
infrastructure, encompassing optimization, fault detection, cyber-security, and renewable energy 
integration. By categorizing AI techniques, ranging from heuristic algorithms and machine learning to 
deep learning and federated learning, the paper highlights their role in solving key challenges in 
conventional and smart grid systems. Specific attention is given to AI’s contributions in economic load 
dispatch, predictive maintenance, intelligent monitoring, and cyber-attack mitigation. Moreover, the 
study discusses the integration of AI in renewable energy management, including solar and hydropower 
systems, alongside challenges such as data privacy, software vulnerabilities, and interoperability 
limitations. The article identifies AI not only as a tool for automation and control but also as a 
transformative enabler for adaptive, decentralized, and secure energy systems. Through its systematic 
analysis, the study underscores the critical role of AI in shaping the future of power infrastructure in the 
context of global energy transitions and smart grid evolution.  
 
Keywords: Power System, Artificial Intelligence, Cyber-attacks. 

 الملخص 
الكهربائية الحديثة ضرورة دمج التقنيات الذكية لضمان الكفاءة تفرض التعقيدات المتزايدة والمتطلبات المتنامية لأنظمة القدرة  

والمرونة والاستدامة. تستعرض هذه الدراسة بشكل شامل التطبيقات المتعددة الأبعاد للذكاء الاصطناعي في بنية أنظمة الطاقة، 

تجددة. ومن خلال تصنيف تقنيات  بما يشمل مجالات التحسين، واكتشاف الأعطال، والأمن السيبراني، ودمج مصادر الطاقة الم

تبرز الورقة   -ابتداءً من الخوارزميات التوجيهية والتعلم الآلي، وصولًا إلى التعلم العميق والتعلم الاتحادي    -الذكاء الاصطناعي  

 قة الكهروضوئيةتشهد أنظمة الطا  .دور هذه التقنيات في معالجة التحديات الرئيسية في كل من الشبكات التقليدية والشبكات الذكية

(PV)  المبكر عن الكشف  الطاقة من خلال  توليد  الضروري رفع كفاءة  يجعل من  الأخيرة، مما  الآونة  في  اعتماداً متزايداً 

تولي الدراسة اهتمامًا   .اية السيبرانية، إلى جانب ضمان الحم (PVS) الأعطال وتحديدها داخل أنظمة الطاقة الكهروضوئية

بمساهمات الذكاء الاصطناعي في التوزيع الاقتصادي للأحمال، والصيانة التنبؤية، والرصد الذكي، والتخفيف من تأثير  خاصًا  

الهجمات السيبرانية. كما تناقش الدراسة كذلك دمج الذكاء الاصطناعي في إدارة الطاقة المتجددة، بما يشمل الأنظمة الشمسية 
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المائيةووالكهر التحديات  جانب  إلى  الأنظمة،  بين  التوافق  ومحدودية  البرمجيات،  وثغرات  البيانات،  بخصوصية   .مرتبطة 

وتخلص الدراسة إلى أن الذكاء الاصطناعي لا يمثل مجرد أداة للتشغيل الآلي والتحكم، بل يعُد محفزًا تحويليًا نحو أنظمة طاقة 

الدرا للذكاء الاصطناعي في تشكيل  أكثر تكيفًا، ولامركزية، وأمانًا. ومن خلال تحليل منهجي، تؤكد  الحاسم  الدور  سة على 

 .مستقبل البنية التحتية للطاقة في ظل التحولات العالمية نحو الطاقة المستدامة وتطور الشبكات الذكية

 
  برانية.يهجمات الس، الذكاء الاصطناعيال أنظمة القدرة، الكلمات المفتاحية:

 
Introduction 
     Optimization is an integral aspect of daily life, guiding the effective and efficient utilization of available 
resources. To address contemporary challenges across various domains, mathematicians and scientists 
have translated this concept into Artificial intelligence systems are developed using Artificial Intelligence 
(AI) has emerged as a key enabler in numerous industries, supporting critical operations such as 
enhancing organizational efficiency and securing infrastructure, including solar power plant defense 
systems [1-3]. Given their technological configuration, solar power plants are often situated in zones 
requiring heightened security oversight. Artificial intelligence holds significant potential for improving 
defect detection in renewable energy systems, particularly in solar power plants and wind turbines [4-8]. 
     The emergence of information and communication technology (ICT) has significantly simplified human 
life and transformed various practical domains [9-11]. A prevailing trend in recent years is the 
enhancement of these technologies through intelligence inspired by natural processes and environmental 
interactions. Within this context, artificial intelligence (AI) and machine learning (ML) have become pivotal 
in scientific and engineering disciplines, Machine learning algorithms have demonstrated the capability to 
meet the operational control requirements of modern power systems [12-15].  
     The electricity system has evolved into an intelligent framework, known as the Smart Grid (SG), 
primarily aimed at efficient load management hydropower contributes significantly to the national energy 
mix. However, many existing hydropower plants are underperforming, highlighting the need for improved 
operational strategies. Efficient management of these facilities is essential to meet growing energy 
demands while minimizing environmental impact. Nonetheless, challenges such as climate variability, 
complex operational conditions, and evolving energy requirements call for the adoption of innovative, 
intelligent solutions to optimize hydropower generation [16-19].  
     As articulated in [20], the realization of an intelligent smart grid hinges upon the integration of artificial 
intelligence (AI) to supplant conventional manual operations, thereby enhancing overall efficiency, 
reliability, and cost-effectiveness throughout the entire energy supply chain, from generation to end-use. 
The effective deployment of AI-driven solutions necessitates the acquisition and assimilation of diverse 
and voluminous datasets to facilitate informed and adaptive decision-making processes. AI applications 
in smart grids function through the processing of extensive data inputs, leveraging advanced 
computational capabilities and robust communication infrastructures.  
     In [21], the study explores the efficacy of the Extra Trees algorithm within a robust two-phase 
framework for fault detection and diagnosis in grid-connected photovoltaic systems. The proposed 
methodology comprises an initial binary fault detection phase, followed by a multi-class fault diagnosis 
phase, achieving impressive classification accuracies of 99.5% and 98.7%, respectively. The research 
highlights the critical role of oversampling techniques in enhancing model performance, particularly in the 
context of class-imbalanced datasets. Furthermore, the integration of explainable artificial intelligence 
(XAI) methodologies augments the interpretability of the model by elucidating the relative importance and 
hierarchical influence of input features. 
     In [22], the authors identified eight principal challenges that distributed energy resources (DERs) 
impose on power grid operations and reviewed contemporary academic advancements concerning the 
deployment of artificial intelligence (AI) in modern power systems. While AI techniques demonstrate 
significant promise in enhancing power system stability and protection, the transition from theoretical 
research to commercial deployment remains unrealized. In this context, our study critically examines the 
key limitations and barriers impeding the practical implementation of AI in power system protection and 
stability. These include the reliance on synthetic datasets, the scarcity of high-fidelity real-world 
measurement data, issues surrounding protection selectivity, and the inherent opacity associated with 
black-box AI models. 
     This article provides a comprehensive overview of artificial intelligence (AI) applications in power 
system infrastructure, highlighting how AI techniques enhance grid efficiency, reliability, and resilience. It 
examines key areas such as load forecasting, fault detection, renewable integration, and predictive 
maintenance, while addressing current challenges including data limitations, model interpretability, and 
integration issues. The study emphasizes the potential of emerging approaches like explainable AI and 
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physics-informed learning, offering valuable insights to guide future research and practical 

implementation in modern power systems. 
Artificial Intelligence Applications in Power Systems 
     The global energy sector is undergoing a paradigm shift driven by the growing penetration of 
renewable energy sources, increased electrification, and the integration of smart grid technologies [23-
26]. In this context, Artificial Intelligence (AI) has emerged as a powerful enabler in modernizing power 
systems. AI offers sophisticated tools for data-driven decision-making, optimization, and automation, 
thereby addressing many of the complex challenges associated with power system planning, operation, 
and control [27-30]. Through machine learning, deep learning, neural networks, and expert systems, AI 
facilitates enhanced efficiency, resilience, and sustainability across various layers of the electricity value 
chain. 

▪ Load Forecasting 
     One of the earliest and most widely adopted AI applications in power systems is load forecasting. AI 
models, particularly artificial neural networks (ANNs), support vector machines (SVMs), and deep learning 
architectures, are capable of predicting short-term, medium-term, and long-term power demand with high 
accuracy [31-35]. These predictions incorporate multiple variables such as historical consumption data, 
weather conditions, time of day, and economic indicators, enabling utility companies to optimize resource 
allocation and reduce operational costs. 

▪ Renewable Energy Forecasting and Integration 
     The intermittency and unpredictability of renewable energy sources such as solar and wind pose 
significant operational challenges [36-40]. AI techniques, especially recurrent neural networks (RNNs) 
and convolutional neural networks (CNNs), are extensively used to forecast solar irradiance and wind 
speed. These forecasts help in dynamic scheduling, grid balancing, and minimizing the curtailment of 
renewable energy, thereby supporting a smoother transition to low-carbon power systems [41-44]. 

▪ Fault Detection and Diagnosis 
     AI enhances the reliability of power systems through automated fault detection, classification, and 
diagnosis. Machine learning algorithms analyze real-time data from sensors and protection devices to 
identify anomalies, locate faults, and recommend corrective actions. This application is vital for reducing 
outage durations and improving system stability. Techniques such as decision trees, fuzzy logic, and 
ensemble methods are commonly employed in these diagnostic systems [45-49]. 

▪ Predictive Maintenance and Asset Management 
     AI-driven predictive maintenance utilizes sensor data and historical failure records to forecast 
equipment degradation and schedule maintenance activities proactively [50-53]. By applying pattern 
recognition, anomaly detection, and time-series analysis, utilities can optimize the performance of 
transformers, circuit breakers, cables, and other critical infrastructure, reducing downtime and extending 
asset life. 

▪ Grid Optimization and Control 
     Real-time grid optimization requires intelligent coordination among distributed energy resources 
(DERs), demand response mechanisms, and energy storage systems. AI algorithms facilitate optimal 
power flow (OPF), voltage stability control, and reactive power management through reinforcement 
learning and optimization techniques [54-59]. These capabilities are essential for smart grid operation and 
achieving high levels of automation [60-63]. 

▪ Energy Management Systems (EMS) 
     AI is at the core of next-generation energy management systems, enabling real-time monitoring, data 
analytics, and adaptive control strategies. EMS powered by AI ensures optimal energy dispatch, 
minimizes energy wastage, and manages energy trading in deregulated electricity markets. Additionally, 
AI enhances decision-making in microgrids and hybrid energy systems where conventional algorithms fall 
short [64-68]. 

▪ Cybersecurity in Power Systems 
     As power systems become increasingly digitized, they are also more vulnerable to cyber-attacks as 
shown in Figure 1. AI can bolster cybersecurity by detecting anomalies in network traffic, identifying 
malicious behavior, and implementing intrusion detection systems (IDS). These intelligent systems learn 
from previous attacks and adapt to new threats in real time, ensuring secure grid operations [69,70]. 
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Figure 1: Cyber-attacks on electrical power grid. 

 
▪ Electric Vehicle (EV) Integration 

     The rapid deployment of electric vehicles necessitates smart charging infrastructure. AI algorithms 
optimize vehicle-to-grid (V2G) interactions, charging schedules, and load balancing to mitigate stress on 
the power grid [71-74]. AI also supports mobility-as-a-service (MaaS) platforms that coordinate energy 
demand from fleets of EVs based on real-time grid conditions. 
     Artificial Intelligence is revolutionizing the way power systems are designed, operated, and maintained. 
From predictive maintenance and fault diagnosis to renewable energy integration and cybersecurity, AI 
provides the intelligence necessary to handle increasing system complexity and the demands of 
sustainability. While challenges related to data quality, transparency, and infrastructure readiness remain, 
the opportunities for AI to enhance the resilience, flexibility, and efficiency of modern power systems are 
substantial. Continued research and investment in AI-driven technologies will be pivotal in shaping the 
future of smart, sustainable, and intelligent power grids. 
Role of AI in Electrical Power Systems 
     Numerous AI techniques are applicable for data collection and analysis in power systems; the selection 
of these methods depends on specific requirements and the complexity of the system under consideration 
as presented in Figure 2. Data acquisition in electrical power systems encompasses the collection, 
processing, and analysis of information gathered from a range of sensors, meters, and other devices                  
[75-77]. The implementation of intelligent data acquisition techniques contributes significantly to improving 
data quality. Given the pivotal role of power systems in supporting national economic stability and public 
welfare, their development must prioritize objectives such as safety, reliability, and environmental 
sustainability. 

▪ Machine Learning  
Machine learning (ML) is a fundamental approach to achieving AI as illustrated in Figure 3. It is defined 
as a field of study that enables computers to learn from data without being explicitly programmed. As a 
subset of AI, machine learning emphasizes the development of systems that can automatically improve 
their performance through experience [78,79]. By employing advanced algorithms, machines are capable 
of analyzing large datasets, identifying underlying patterns, and making predictions, without the need for 
manually coded instructions. Moreover, machine learning systems can enhance their performance over 
time by learning from errors, thereby improving their ability to recognize complex patterns. 
     Machine learning is the process of supplying a system with data, referred to as training or learning 
data, and utilizing this data to automatically infer the system’s parameters (i.e., variable values). Machine 
learning techniques are generally categorized into three primary types: supervised learning, unsupervised 
learning, and reinforcement learning. Commonly used machine learning algorithms include neural 
networks, logistic regression, Support Vector Machines (SVM), decision trees, and random forests, 
among others. 
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Figure 2: Categorization of AI techniques. 

 
Figure 3: The components of machine learning. 

 

• Supervised learning: consists of two main phases: learning phase and the inference phase. 
Unsupervised learning primarily involves the task of grouping or clustering similar data instances 
from large datasets. This approach is widely utilized in various applications, including anomaly 
detection, peacekeeping operations, and recommendation systems. 

• Reinforcement Learning: Reinforcement Learning (RL) is a branch of machine learning that 
focuses on decision-making strategies based on interactions with an environment, with the goal 
of maximizing cumulative rewards. The foundational concept of RL is rooted in behaviorist 
psychology, which posits that organisms adapt their behavior through repeated exposure to 
environmental stimuli, such as rewards or punishments, eventually developing habitual 
responses that aim to optimize outcomes. 

• Deep learning: is particularly well-suited for processing large-scale datasets, whereas traditional 
machine learning methods tend to be more effective when data availability is limited. By enabling 
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a wide range of machine learning applications, deep learning has significantly expanded the 
capabilities of artificial intelligence. It underpins numerous advanced technologies, including 
autonomous vehicles and predictive healthcare systems. 

     The primary distinction between deep learning (DL) and reinforcement learning (RL) lies in their 
training paradigms and application domains. Deep learning typically relies on labeled datasets for 
supervised learning, whereas reinforcement learning operates in environments where feedback is 
provided through rewards rather than explicit labels. While deep learning is predominantly applied to 
perceptual tasks such as image and speech recognition, reinforcement learning is more focused on 
sequential decision-making problems.  
Challenges  

▪ Data Quality and Availability 
AI models require vast amounts of high-quality, labeled data for training and validation. However, in many 
power systems, especially in developing regions, data may be incomplete, inconsistent, or outdated. The 
lack of real-time, granular, and standardized datasets limits the effectiveness of machine learning 
algorithms, particularly for predictive maintenance, fault detection, and load forecasting. 

▪ Cybersecurity and Privacy Risks 
The integration of AI into power systems increases vulnerability to cyber threats. Intelligent algorithms 
connected to SCADA systems or grid components may be exploited by malicious actors to disrupt 
operations or access sensitive data. Ensuring secure AI deployment and compliance with data privacy 
regulations remains a significant challenge. 

▪ System Complexity and Explainability 
Power systems are inherently complex, and the use of black-box AI models (e.g., deep learning) can 
make decision-making processes opaque. The lack of interpretability and explainability in many AI tools 
undermines trust among operators and regulators, making their adoption in mission-critical applications 
challenging. 

▪ Integration with Legacy Systems 
Many power infrastructures rely on legacy equipment that was not designed for AI-based interaction. 
Seamless integration of AI with these systems requires substantial upgrades, increased interoperability, 
and standardized communication protocols, factors that may incur high costs and technical hurdles. 

▪ Regulatory and Ethical Considerations 
The absence of established regulatory frameworks and ethical guidelines for AI applications in power 
systems can slow down innovation and deployment. Concerns regarding accountability in automated 
decision-making and biases in algorithmic outputs need to be systematically addressed. 
Opportunities  

▪ Enhanced Grid Reliability and Resilience 
AI enables real-time monitoring and predictive analytics, allowing grid operators to anticipate failures, 
optimize load dispatch, and swiftly respond to disturbances. This enhances grid resilience against outages 
and improves the stability of supply, especially under high penetration of renewables. 

▪ Integration of Renewable Energy Sources 
AI algorithms are critical in managing the variability and intermittency of solar and wind power. Techniques 
such as deep learning and reinforcement learning can forecast generation, optimize storage utilization, 
and dynamically adjust demand-response schemes, thus facilitating a cleaner and more flexible power 
system. 

▪ Smart Load Forecasting and Demand Response 
Machine learning models can provide highly accurate short- and long-term load forecasting by analyzing 
weather data, historical demand patterns, and consumer behavior. This enables proactive grid 
management, cost reduction, and improved energy efficiency. 

▪ Asset Management and Predictive Maintenance 
AI-driven diagnostics tools can assess the health of assets such as transformers, cables, and circuit 
breakers using sensor data. Predictive maintenance strategies, supported by anomaly detection and 
pattern recognition algorithms, reduce downtime and extend equipment lifespan. 

▪ Decentralized and Autonomous Operation 
The emergence of distributed energy resources (DERs) and microgrids necessitates decentralized control 
systems. AI agents can facilitate autonomous coordination, peer-to-peer energy trading, and local 
optimization, promoting energy democratization and resilience. 
Conclusion 
      Artificial Intelligence (AI) has emerged as an indispensable component in the advancement and 
modernization of power system infrastructure. This comprehensive review illustrates that AI technologies, 
spanning machine learning, deep learning, heuristic optimization, and federated learning, offer 
transformative potential across various operational domains of electrical power systems. From enhancing 
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economic load dispatch and improving fault diagnostics to optimizing renewable energy resources and 
defending against sophisticated cyber-attacks, AI significantly boosts the reliability, security, and 
sustainability of both traditional and smart grid systems. The integration of AI in power systems brings 
forth numerous benefits, including adaptive learning capabilities, decentralized decision-making, real-time 
responsiveness, and intelligent automation. Specifically, the deployment of AI-driven models in grid 
coordination, predictive maintenance, and cyber-attack detection contributes to enhanced operational 
stability and resilience, particularly in the face of increasing penetration of renewable energy sources such 
as solar and wind. The article also highlights AI's capability to facilitate advanced energy management 
systems, enabling real-time monitoring, forecasting, and resource optimization under dynamic conditions. 
Despite these advancements, the study acknowledges several persistent challenges that could hinder 
the full-scale adoption of AI in power systems. These include concerns over data privacy and 
cybersecurity, interoperability with legacy systems, the opacity of AI decision-making processes, and the 
demand for extensive computational resources and labeled data. Furthermore, the potential risks 
associated with AI’s "black-box" nature necessitate the development of explainable AI (XAI) frameworks 
to ensure transparency and trustworthiness in critical power infrastructure applications. 
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