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Abstract:  
This study investigates the use of artificial neural networks (ANNs) in Active Noise Cancellation (ANC) 
systems, demonstrating their effectiveness in reducing acoustic noise. By training the system with real-
world audio data, such as ambulance sounds, the ANN-based approach successfully minimized noise 
while maintaining performance balance. The neural network design employed the tanh activation 
function across hidden and output layers, structured with three hidden layers (2, 3, and 5 nodes). 
Optimal performance was achieved through careful parameter tuning, including a learning rate of 0.001 
and a momentum value of 0.9. The research underscores the capability of multi-layer perceptron (MLP) 
networks in accurate signal prediction and highlights the significance of parameter optimization. This 
adaptable MLP-based method holds promise for a wide range of signal prediction and noise 
cancellation applications. 
 
Keywords: Artificial Neural Networks, Multi-Layer Perceptron, Signal Prediction, Active Noise 
Cancellation. 

 الملخص 
(، ANC( في أنظمة إلغاء الضوضاء النشطة )ANNsالعصبية الاصطناعية ) تبحث هذه الدراسة في استخدام الشبكات  

مما يدل على فعاليتها في تقليل الضوضاء الصوتية. من خلال تدريب النظام باستخدام بيانات صوتية من العالم الحقيقي،  
مثل أصوات سيارات الإسعاف، نجح النهج القائم على الشبكات العصبية الاصطناعية في تقليل الضوضاء مع الحفاظ على  

عبر الطبقات المخفية والمخرجة، والمهيكلة بثلاث طبقات   tanhية دالة تنشيط  توازن الأداء. استخدم تصميم الشبكة العصب
وقيمة    0.001عقد(. تم تحقيق الأداء الأمثل من خلال ضبط المعلمات بعناية، بما في ذلك معدل تعلم    5و  3و  2مخفية )

الطبقات )0.9زخم   البحث على قدرة شبكات الإدراك الحسي متعدد  التنبؤ  MLP. يؤكد  الدقيق بالإشارات ويسلط ( في 
القابلة للتكيف القائمة على   تعد بمجموعة واسعة من تطبيقات    MLPالضوء على أهمية تحسين المعلمات. هذه الطريقة 

 التنبؤ بالإشارات وإلغاء الضوضاء.
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 .ء الضوضاء النشطإلغا ،، التنبؤ بالإشارةد الطبقات، المدرك متعدالشبكات العصبية الاصطناعيةالكلمات المفتاحية: 

Introduction 
     Active noise control (ANC) has gained attention due to advances in computational power and 
electronics. Traditional ANC systems, relying on linear filters, struggle with nonlinear and nonstationary 
noise. Deep learning-based methods, like DNoiseNet, use atrous convolution and recurrent neural 
networks to improve ANC performance in environments such as construction sites, vehicles, and 
airplanes. An MLP-based secondary path estimator also addresses acoustic delay, enhancing noise 
reduction [1].  
     While effective in automotive settings, ANC's application in built environments remains limited. 
Research highlights its potential in construction machinery, noise barriers, and naturally ventilated 
buildings, stressing the need for intelligent solutions and stakeholder collaboration to handle complex 
noise variations [2]. Traditional ANC methods, based on adaptive signal processing, often fail in 
nonlinear conditions. Deep ANC treats ANC as a supervised learning problem, employing convolutional 
recurrent networks (CRNs) to generate anti-noise signals, achieving effective noise reduction across 
diverse scenarios [3].  
     Deep MCANC extends this to multi-channel ANC, optimizing control parameters for multiple 
canceling signals using CRN-based spectral mapping, demonstrating robustness against nonlinear 
distortions [4]. For construction sites, a deep-learning-based feedforward ANC controller mitigates 
transient machinery noise, balancing broadband attenuation and computational efficiency [5]. Another 
approach, the Harmonic Acoustic Pneumatic Source (HAPS), uses a controlled flow valve for duct noise 
cancellation, overcoming limitations of traditional loudspeakers in harsh conditions [6]. ANC has also 
been applied to windows for urban noise reduction, though challenges in system integration and energy 
efficiency remain [7].  
     ANC systems rely on superposition, generating anti-noise signals with equal amplitude and opposite 
phase. Recent developments focus on real-time adaptive filtering for dynamic environments [8]. For 
construction sites, CsNNet incorporates acoustic delays and nonlinear behaviors, achieving significant 
noise reduction [9]. Beyond noise control, ANC aids non-invasive sensing, using ultrasonic waves to 
identify fluid properties in enclosed containers by canceling structural noise and improving signal-to-
noise ratios [10]. These advancements underscore deep learning's potential to revolutionize ANC, 
making it more adaptable and effective across diverse applications.  
     This research employs an artificial neural network (ANN) method to mitigate acoustic noise. The 
ANN predicts the noise, and the predicted value is inverted and combined with the incoming noise to 
diminish its intensity. A multilayer perceptron, known for its time series prediction capabilities, is utilized 
as the neural network model. The network was trained using noise samples, and a segment of current 
noise was fed into the system to facilitate prediction. Various tests were conducted to assess the 
system's performance, confirming that this approach effectively reduces acoustic noise. 
Methods 
     This study enhances noise cancellation systems for ambulance sirens by leveraging the forecasting 
capabilities of artificial neural networks. The methodology for developing the system begins with an 
analysis of research requirements, followed by system design and implementation. The research 
approach is divided into clear steps: first, collecting ambulance siren data, which is then processed in 
MATLAB. The data is filtered using a Butterworth filter with a specific cutoff frequency, serving as both 
pre-processing and normalization. Next, a suitable neural network is designed and developed, requiring 
a thorough understanding of neural network principles, including algorithms and architecture. The final 
steps involve implementing the system, testing it against study requirements, and evaluating its 
performance. 
ANN model design and programming 
Designing an artificial neural network (ANN) follows a structured approach, typically consisting of five 
main stages: 

▪ Data Collection: Acquiring the required dataset. 
▪ Signal Pre-processing: Cleaning and normalizing the data. 
▪ Network Design: Creating the architecture of the neural network. 
▪ Network Training: Training the model using the processed data. 
▪ Performance Evaluation: Testing the model to assess its effectiveness. 

     The initial stage in designing ANN models involved the gathering and preparation of sample data.      
According to the requirements, an ambulance siren audio file named "amb.m4a" was selected as the 
target sound for cancellation. The data was prepared by developing code to read and process it in 
MATLAB. Following data collection, two pre-processing steps were implemented to enhance the 
efficiency of ANN training. First, the raw data was filtered using a Butterworth filter with a 50 Hz cut-off 
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frequency and a fifth-order design to eliminate randomness. The filtered data was then normalized to 
ensure consistent scaling, as combining variables with significantly different magnitudes could mislead 
the learning algorithm, causing smaller-scale variations to be ignored. Normalization ensured that all 
input features were equally weighted, improving the network's ability to learn effectively. 
Implementation 
     When the network weights, biases, and target values are initialized, MATLAB's toolbox offers various 
functions such as narnet, narxnet, and newff to design the network. Key parameters to define include 
the number of hidden layers, nodes per layer, training function, transfer function, bias/weight learning 
function, and performance function. For this project, a feedforward multi-layer perceptron (MLP) 
network will be used. The network consists of three main layers: input, output, and hidden layers. The 
input layer, with ten nodes, is determined by the input data's characteristics, while the output layer has 
a single node as the network is designed for forecasting sound signals. The number of hidden layers 
and neurons is flexible but should be chosen carefully, as increasing neurons within a single hidden 
layer is often more effective than adding multiple layers. However, too many neurons can cause over 
fitting, where the model captures noise as valid patterns, while too few neurons can lead to under fitting, 
where the model fails to capture underlying data trends [11,12]. Figure 1 illustrates this concept, 

showing an estimated function f(x) in black, with under fitting g1(x) in red, over fitting g10(x) in blue, and 

a well-generalized fit g3(x) in green. 
 

 
Figure 1: over-fitting, under-fitting and good fitting [11]. 

 
     Underfitting happens when a predictor fails to model unseen data (testing data) accurately, while 
overfitting occurs when it performs well on training data but poorly on testing data. Balancing these 
issues is crucial for achieving a good fit, or generalization. A common approach is to begin with a large 
number of nodes in the hidden layer to maximize accuracy, despite increased training time, and then 
reduce nodes gradually while monitoring accuracy. This helps eliminate unnecessary complexity 
without significantly impacting performance. The proposed neural network design is shown in Figure 2. 
 

Input 1

Input 2

Input 10

Output

Input 
layers

Output 
layers

Hidden 
layers

.
 
.
 
.
 
.
 

.
 
.
 
.

Direction of signal flow

 
Figure 2: Neural Network Design. 
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     During training, weight adjustments are made to minimize the difference between predicted and 
actual outputs. In this paper, the input data is an ambulance sound signal, which the neural network 
requires for training. Various training algorithms are explored to enhance the MLP system. MATLAB 
provides transfer functions, including Hyperbolic, Tangent Sigmoid (logsig), Linear (purelin), and 
Logistic Sigmoid (tansig), with their mathematical representations and graphs as shown in Table 1. 
 

Table 1: The graphical and mathematical representation of functions. 
Name of the Function Hyperbolic Tangent Sigmoid Linear Logistic Sigmoid 

 
 

The Graph of Function 

 

 

 

Mathematical 
Representation 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
 

𝑓(𝑥)=x  𝑓(𝑥) =
1

1 − 𝑒−𝑥
 

 
     Preparing data before training a neural network is a critical factor for the success of any project. The 
process of signal preparation for neural network training consists of the following two stages: 

• Filtering: Process the original signal using a Butterworth filter with a 50 Hz cut-off frequency 
and a fifth-order configuration. 

• Normalization: Scale the data to a range of -1 to +1 to maintain uniformity and enhance the 
neural network's performance. Figure 3 illustrates the original signal in blue and the pre-
processed signal in red. 

 

 
Figure 3: original and new Data. 

 
     Implementation of Neural Networks: With all required data (training, testing, and target data) 
prepared and ready, the next step is to implement the neural network using MATLAB-based code.  
Configuring MLP Parameters. The Hyperbolic Tangent (tanh) function is chosen as the training 
algorithm for this project. Key parameters for the neural network design have been initialized, with some 
to be fine-tuned during testing to achieve the best results. These parameters are: 
RMSE (error goal): 0.01  

▪ Rate of Learning: 0.05  
▪ Momentum: 0.1  
▪ Hyperbolic Tangent (tanh) applied to the output and hidden layers is the activation function. 
▪ 10 nodes make up the input layers.  
▪ One node is the output layer.  
▪ During testing, hidden layers, nodes, and epochs will be modified to maximise network 

performance. 
     Figure 4 presents the finalized flowchart detailing the step-by-step process for implementing the 
neural network and optimizing its performance. 
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Figure 4: The final system flowchart. 

 
     Following multiple test cases to determine the best-performing network, the finalized parameters 
for the neural network design is outlined in Table 2. 
 

Table 2: the setting parameters. 
Parameter Design 

Activation Function (Output) Hyperbolic Tangent 

Activation Function (Hidden Layers) Hyperbolic Tangent 

Training Algorithm Hyperbolic Tangent 

Output Layer Size 1 

Input Layer Size 10 

Learning Rate 0.001 

Momentum 0.9 

Epochs 700 

Number of Hidden Layers 3 

Nodes Numbers 2, 3, 5 

 
     The network architecture consists of three hidden layers, containing 2, 3, and 5 neurons 
respectively, as depicted in Figure 5. 
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Figure 5: Neural network with three hidden layers and ten inputs. 

 
Results and discussion 
     After extensive testing to determine the most effective design, the finalized model was reapplied, 
and the output signals were plotted. To confirm the design's reliability, four tests were conducted using 
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different segments of the signal, demonstrating its capability to predict signals across varying lengths 
consistently. The neural network, configured with two hidden layers (2 and 3 neurons) and trained over 
2500 epochs. This test aimed to validate the network's prediction accuracy and performance for this 
specific portion of the signal. The results were analyzed and visualized to confirm the design's capability 
in modeling the signal effectively. 

 

 
Figure 6: (samples 500 to 700) (a) tested and predicted signals. (b) actual, predicted and overall 

signals. 

 
     Figure 6 (a) illustrates the actual test signal alongside the predicted signal produced by the neural 
network. Figure 6 (b) provides a more detailed view, showcasing the actual test signal, the predicted 
signal, the anti-phased predicted signal (for noise cancellation), and the overall signal, which reflects 
the combined result of the noise reduction process. These figures highlight the network's ability to 
accurately predict and effectively reduce noise. 
 

 
Figure 7: Actual, predicted, anti-phased, and overall signals plotted individually. 

 
     Figure 7 presents each signal actual, predicted, anti-phased predicted, and overall plotted in 
separate graphs for clear visualization and analysis. This allows for a detailed comparison of the signals 
and an assessment of the neural network's performance. 
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Figure 8: (samples 1000 to 2000) (a) tested and predicted signals. (b) Actual, predicted and overall 

signals. 

 
Figure 9: (samples 1 to 5000) (a) tested and predicted signals. (b) Actual, predicted and overall 

signals. 

 
Figure 10: (samples 6000 to 9000) (a) tested and predicted signals. (b) Actual, predicted and overall 

signals. 
 
     Figures 8, 9, and 10 display the results of tested and predicted signals across various sample 
ranges. In Figure 8, panel (a) shows the tested and predicted signals for samples 1000 to 2000, while 
panel (b) illustrates the actual, predicted, and overall signals. Figure 9 presents the tested and predicted 
signals for samples 1 to 5000 in panel (a), with panel (b) showing the actual, predicted, and overall 
signals. Similarly, Figure 10 displays the tested and predicted signals for samples 6000 to 9000 in panel 
(a), and panel (b) depicts the actual, predicted, and overall signals. 
Conclusion 
     The study focuses on an Active Acoustic Noise Cancellation (ANC) system using artificial neural 
networks (ANNs). While various noise reduction techniques exist, most rely on similar principles, 
generating signals that invert polarity or apply phase shifts to cancel noise. This study demonstrates 
the effectiveness of using ANN-based systems for noise elimination, particularly by training networks 
with real-world audio, such as ambulance sounds. The system successfully reduced noise and 
maintained balanced performance. The design of the neural network was crucial, with the tanh 
activation function used for both output and hidden layers.  three hidden layers (2, 3, 5 nodes). The 
learning rate of 0.001 and momentum value of 0.9 was key to achieving optimal performance. The 
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research highlights the capability of multi-layer perceptron (MLP) networks in predicting signals with 
reasonable accuracy, emphasizing the importance of parameter tuning in achieving effective results. 
The MLP method can be adapted for various signal prediction tasks. 
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