

The *q*-Integral Operator of Meromorphic Functions

Anessa Oshah Department of Mathematics, Faculty of Science, Sabratha University, Sabratha, Libya

المؤثر التكاملي- q للدوال الميرومورفية

أنيسة بشير أحمد أوشاح قسم الرياضيات، كلية العلوم، جامعة صبراتة، صبراتة، ليبيا

*Corresponding author: anessa.oshah@sabu.edu.ly

Received: February 03, 2025	Accepted: April 06, 2025	Published: April 21, 2025
Abstract:		

In 2012, Frasin presented sufficient conditions for the integral operator H(z) associated with meromorphic functions. This study aims to extend Frasin's results by utilizing *q*-calculus to introduce and examine the *q*- integral operator $\mathcal{H}_q(z)$ by using *q*-hypergeometric function. The research focuses on deriving sufficient conditions for this operator and studying its properties.

Keywords:The *q*-hypergeometric function, *q*-derivative, *q*-Jackson integral, Meromorphic functions.

الملخص في عام 2012، قدم فراسين شروطا كافية للمؤثر التكاملي H(z) المرتبط بالدوال الميرومورفية. تهدف هذه الدراسة إلى توسيع نتائج فراسين من خلال استخدام حساب التفاضل والتكامل - q لتقديم ودراسة المؤثر - q التكاملي H_q(z) باستخدام الدالة فوق الهندسية من النوع- q . يركز البحث على اشتقاق الشروط الكافية لهذا المؤثر ودراسة خصائصه.

الكلمات المفتاحية: الدالة فوق الهندسية من النوع - q، المشتقة -q، التكامل- q لجاكسون، الدوال المير ومور فية.

Introduction

The *q*- calculus is a branch of math that connects different areas like hypergeometric series, complex analysis, and particle physics. It's a popular field today with various branches, such as quantum calculus and continued fractions. In 1910, Jackson [1] introduced the definite *q*-integral and systematically developed *q*-calculus. Later in the 20th century, the field expanded as a result of its mathematical and physical applications. Several researchers studied *q*-integrals [2-4]. This paper introduces a new *q*-integral operator $\mathcal{H}_q(z)$ based on the *q*-hypergeometric function. It also defines conditions for this operator to belong to the class $\Omega_{N,q}(\eta)$. Before that, we review some basic ideas of *q*-calculus. All of the results can be found in [5-8].

Let *q* be a complex number such that q < 1. For $n \in \mathbb{N}$, and any complex number α the *q*-Pochhammer symbol, also known as the *q*-shifted factorial is defined as follows.

$$(\alpha; q)_0 = 1, \ (\alpha; q)_n = \prod_{k=0}^{n-1} (1 - \alpha q^k).$$
 (1.1)

The *q*-Pochhammer symbol can be extended to an infinite product:

$$\lim_{n \to \infty} (\alpha; q)_n = (\alpha; q)_\infty = \prod_{m=0}^\infty (1 - \alpha q^m), \tag{1.2}$$

and

$$(\alpha;q)_n = \frac{(\alpha;q)_{\infty}}{(\alpha q^n;q)_{\infty}}, \quad n \in \mathbb{N}_0, |q| < 1.$$
(1.3)

The q-derivative of a function f is given by:

$$D_q f(z) = \frac{f(zq) - f(z)}{(q-1)z}, \quad q \neq 1, \ z \neq 0.$$
 (1.4)

If f'(0) exists, the *q*-derivative satisfies $D_q f(0) = f'(0)$. As *q* approaches 1, the *q*-derivative converges to the standard derivative. The *q*-Jackson integrals defined as given in [1]:

$$\int_{0}^{z} f(t)d_{q}t = (1-q)z\sum_{n=0}^{\infty} q^{n}f(zq^{n}).$$
(1.5)

For any function f, one has

$$D_q\left(\int_0^z f(t)d_qt\right) = f(z) \tag{1.6}$$

Therefor, the *q*-derivative of $f(z) = z^k$, is given by

$$D_q(z^k) = \frac{1-q^k}{1-q} z^{k-1} = [k]_q z^{k-1},$$
(1.7)

where

$$[k]_q = \begin{cases} \frac{1-q^k}{1-q} & , \ q \neq 1\\ k & q-1 \end{cases}.$$
 (1.8)

The q-derivative D_q for the product and quotient of two functions can expressed as follows:

 $D_q(f(z)g(z)) = f(qz)D_qg(z) + g(z)D_qf(z),$ (1.9)

$$D_q\left(\frac{f(z)}{g(z)}\right) = \frac{g(z)D_q f(z) - f(z)D_q g(z)}{g(qz)g(z)}, \quad g(qz)g(z) \neq 0.$$
(1.10)

Note that:

$$D_q(\log f(z)) = \frac{\ln q}{q-1} \frac{D_q f(z)}{f(z)}.$$
(1.11)

Let Ω represent the set of functions expressed in the form:

$$f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} a_k z^k,$$
 (1.12)

analytic within the punctured open unit disk $\mathbb{U}^* = \{z: z \in \mathbb{C}, 0 < |z| < 1\} = \mathbb{U} \setminus \{0\}$, where \mathbb{U} denotes the open unit disk.

A function
$$f \in \Omega$$
 is considered meromorphic starlike of order α for some $(0 \le \alpha < 1)$ if,
 $-\Re e\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad (z \in \mathbb{U}^*),$
(1.13)

we denote $\Omega^*(\alpha)$ as the class that includes all meromorphic starlike functions of order α . In addition, for $f \in \Omega$, Wang et al. [9] introduced and investigated the subclass $\Omega_N(\eta)$ of Ω , which consists of functions f(z) that satisfy:

$$-\Re e\left(\frac{zf''(z)}{f'(z)} + 1\right) < \eta, \quad (\eta > 1, \ z \in \mathbb{U}^*).$$
(1.14)

Using *q*-derivative, we define the *q*-analogues of the function classes $\Omega^*(\alpha)$, $\Omega_N(\eta)$.

A function $f \in \Omega$ belongs to the class $\Omega_q^*(\alpha)$ if it satisfies:

_

$$-\Re e\left(\frac{zD_q f(z)}{f(z)}\right) > \alpha, \quad (0 \le \alpha < 1, z \in \mathbb{U}^*).$$
(1.15)

A function $f \in \Omega$ belongs to the class $\Omega_{N,q}(\eta)$ if it satisfies:

$$-\Re e\left(\frac{zqD_q^2f(z)}{D_qf(z)}+1\right) < \eta \quad , (\eta > \frac{1}{q}, z \in \mathbb{U}^*).$$

$$(1.16)$$

Given complex numbers $a_1, ..., a_r, b_1, ..., b_s$ with the condition that $b_j \neq 0, -1, ...,$ for $j \in \{1, 2, ..., s\}$ the basic hypergeometric function (or the general *q*-hypergeometric function series) $_r \Phi_s$ is defined as follows:

$${}_{r}\Phi_{s}(a_{1},\ldots,a_{r};b_{1},\ldots,b_{s};q,z) = \sum_{k=0}^{\infty} \frac{(a_{1},\ldots,a_{r};q)_{k}}{(b_{1},\ldots,b_{s};q)_{k}} \frac{z^{k}}{(q;q)_{k}} \left[(-1)^{k} q^{\frac{k(k-1)}{2}} \right]^{s-r+1},$$
(1.17)

where $(a_1, \ldots, a_r; q)_k$ is abbreviation for $\prod_{j=1}^r (a_j; q)_k$, and $q \neq 0$ when r > s + 1, $(r, s \in \mathbb{N}_0 = \{0, 1, 2, \ldots\})$, we observe that as $q \to 1$ we have $(1 - q)^{-k}(q^{\alpha}; q)_k \to (a)_k$, where $(a)_k$ known as the Pochhammer symbol, which is defined as: $(a)_k = a(a + 1) \dots (a + k - 1)$.

In 1846, Heine extended the concept of the hypergeometric series by introducing the *q*-hypergeometric series. For a short summary, see references [10], [6], and [11].

For $z \in U$, |q| < 1, and r = s + 1, the *q*-hypergeometric function reduces to a special case with the following form.

$${}_{r}\Psi_{s}(a_{1},\ldots,a_{r};b_{1},\ldots,b_{s};q,z)=\sum_{k=0}^{\infty}\frac{(a_{1},\ldots,a_{r};q)_{k}}{(b_{1},\ldots,b_{s};q)_{k}(q;q)_{k}}z^{k}.$$

Corresponding to the function $\mathcal{W}_{r,s}[a_1, b_1; q]$ given by:

$$\mathcal{W}_{r,s}[a_1, b_1; q] = \frac{1}{z} \, _r \Psi_s(a_1, \dots, a_r; b_1, \dots, b_s; q, z), \tag{1.18}$$

We introduce the linear operator $Q_{r,s}[a_1;q]: \Omega \to \Omega$ defined as follows:

$$\mathcal{Q}_{r,s}[a_1;q] = \mathcal{W}_{r,s}[a_1,b_1;q] * f(z),$$

$$\mathcal{Q}_{r,s}[a_1;q]f(z) = \frac{1}{z} + \sum_{k=1}^{\infty} \frac{(a_1,\dots,a_r;q)_{k+1}}{(b_1,\dots,b_s;q)_{k+1}(q;q)_{k+1}} a_k z^k.$$
 (1.19)

The linear operator $Q_{r,s}[a_1; q]$ generalizes many previous operators. Specifically, when $\alpha_i = q^{\alpha_i}, \beta_j = q^{\beta_j}, \alpha_i, \beta_j \in \mathbb{C}, \beta_j \neq 0, -1, ..., \text{ for } (i = 1, 2, ..., r) \text{ and } (j = 1, 2, ..., s), q \rightarrow 1 \text{ and } r = s + 1$, we have the following:

$$\mathcal{Q}_{r,s}[q^{a_1};q]f(z) = \mathcal{H}_r^s[a_1],$$

The linear operator $\mathcal{H}_r^s[a_1]$ was previously studied by Liu and Srivastava [12] in the case p = 1, Furthermore, for r = 2, s = 1 and $a_2 = 1$, we obtain:

$$\mathcal{Q}_{2,1}[q^a,q,q^c;q] = \mathcal{L}(a,c),$$

The linear operator $\mathcal{L}(a, c)$ was previously studied by Liu and Srivastava [13] in the case p = 1, this operator is related to the one studied by Carlson and Shaffer, which has been widely used in analytic and univalent function theory in \mathbb{U} .

Many researchers have studied an integral operator involving *q*-hypergeometric functions[14],[15]: $\frac{1}{7} r \Psi_s(a_1, ..., a_r; b_1, ..., b_s; q, z).$

By utilizing the differential operator $Q_{r,s}[a_1;q]$ defined in equation (1.19), we establish a new sufficient condition for the q-integral operator of meromorphic functions in Ω to belong to the class $\Omega_{N,q}(\eta)$.

Definition 1.1 Let $Q_{r,s}[a_1;q]f(z) \in \Omega, c > 0, |q| < 1, \gamma_j > 0$ for j = 1, 2, ..., n, where $n \in \mathbb{N}$. We define the q-integral operator $\mathcal{H}_q(z): \Omega^n \to \Omega$ as follows:

$$\mathcal{H}_{q}(z) = \frac{c}{z^{c+1}} \int_{0}^{z} u^{c-1} (u \mathcal{Q}_{r,s}[a_{1};q] f_{1}(u))^{\gamma_{1}} \dots (u \mathcal{Q}_{r,s}[a_{1};q] f_{n}(u))^{\gamma_{n}} d_{q} u.$$
(1.20)

Remark 1.1 if $r = 1, s = 0, a_1 = q$ with $q \to 1$, the q-integral operator $\mathcal{H}_q(z)$ becomes the integral operator.

$$H(z) = \frac{c}{z^{c+1}} \int_0^z u^{c-1} (uf_1(u))^{\gamma_1} \dots (uf_n(u))^{\gamma_n} du,$$

Introduced by Frasin [16]. If $c = 1, r = 1, s = 0, a_1 = q$ with $q \rightarrow 1$, the q-integral operator $\mathcal{H}_q(z)$ becomes the integral operator.

$$H(z) = \frac{1}{z^2} \int_0^z (uf_1(u))^{\gamma_1} \dots (uf_n(u))^{\gamma_n} du, \quad (z \in \mathbb{U}^*),$$

Introduced by Mohammed and Darus [17]. If n = 1, $\gamma_1 = \gamma$, $f_1 = f$, the integral operator $\mathcal{H}_q(z)$ becomes the integral operator.

$$I_{q,c}^{\gamma}(z) = \frac{c}{z^{c+1}} \int_{0}^{z} u^{c-1} (u \mathcal{Q}_{r,s}[a_{1};q]f(u))^{\gamma} d_{q}u, \quad (|q| < 1, c, \gamma > 0)$$

For $r = 1, s = 0, a_1 = q, q \rightarrow 1, n = 1, f_1 = f, \gamma = 1$, then the integral operator is

 $I_c(z) = \frac{c}{r^{c+1}} \int_0^z u^{c-1} f(u) du$, and it has been studied by various authors (cf.,eg., [18], [19], [20]).

Using the *q*-derivative, Lemma 2.4 from [21] can be extended to broader cases. **Lemma 1.1** If $f(z) \in \Omega$ satisfies $f(z)D_af(z) \neq 0$ in \mathbb{U} and

$$\Re e\left\{\frac{zD_qf(z)}{f(z)} - \frac{zD_q^2f(z)}{D_qf(z)}\right\} < 2 - \beta, \quad (z \in \mathbb{U}^*),$$

then:

$$-\Re e\left\{\frac{zD_qf(z)}{f(z)}\right\} < \frac{1}{3-2\beta}, \quad (z \in \mathbb{U}^*),$$

where $1/2 \le \beta < 1$.

Proof. The function p is defined in \mathbb{U}^* as follows

$$-\frac{zD_qf(z)}{f(z)} = \delta + (1-\delta)p(z)$$

with $\delta = 1/(3 - 2\beta)$, applying a proof analogous to that of Theorem 2.2 in [21], we obtain

$$-\Re e\left\{\frac{zD_qf(z)}{f(z)}\right\} < \frac{1}{(3-2\beta)}, \quad (|q| < 1, z \in \mathbb{U}^*).$$

By sitting $q \rightarrow 1$ in Lemma1.1, we get Lemma 2.4 in [21].

Main results

Theorem 2.1 Let $Q_{r,s}[a_1;q]f_j(z) \in \Omega$ and $\gamma_j > 0$ for j = 1, 2, ..., n, with

$$1 < \sum_{j=1}^{n} [\gamma_j]_q < q^{-c} [c+1]_q, \quad (|q| < 1, c > 0).$$
(2.1)

If $\mathcal{H}_q(z) \in \Omega_q^*(\alpha)$ and $zD_q\mathcal{H}_q(z)/\mathcal{H}_q(z) \neq 0$ in \mathbb{U} , then $\mathcal{H}_q(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$.

Proof. It follows from (1.20) that

_

$$D_q\left(\frac{z^{c-1}\mathcal{H}_q(z)}{c}\right) = z^{c+1}(z\mathcal{Q}_{r,s}[a_1;q]f_1(z))^{\gamma_1}\dots(z\mathcal{Q}_{r,s}[a_1;q]f_n(z))^{\gamma_n}$$
(2.2)

Applying logarithmic q-differentiation as defined in (1.11) to (2.2) and then multiplying by z, we obtain.

$$\frac{z^{2}q^{c+2}D_{q}^{2}\mathcal{H}_{q}(z) + (q^{c+1} + cq^{c} + [c+1]_{q})zD_{q}\mathcal{H}_{q}(z) + \frac{c}{q}[c+1]_{q}\mathcal{H}_{q}(z)}{zq^{c+1}D_{q}\mathcal{H}_{q}(z) + [c+1]_{q}\mathcal{H}_{q}(z)}$$

$$= \frac{c-1}{q} + \sum_{j=1}^{n} [\gamma_{j}]_{q} \left(\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)} + \frac{1}{q}\right),$$

which is equivalent to

$$\frac{\frac{zqD_{q}^{2}\mathcal{H}_{q}(z)}{D_{q}\mathcal{H}_{q}(z)} + \frac{c[c+1]_{q}}{q^{c+2}} \frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)} + \left(\frac{1}{q^{c+1}}[c+1]_{q} + \frac{c}{q} + 1\right)}{1 + \frac{[c+1]_{q}}{q^{c+1}} \frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}} - \frac{c^{-1}}{1 + \sum_{r=1}^{n}} \sum_{j=1}^{n} \frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}$$

$$= \frac{c-1}{q} + \sum_{j=1}^{n} [\gamma_j]_q \left(\frac{z D_q \mathcal{Q}_{r,s}[a_1;q] f_j(z)}{\mathcal{Q}_{r,s}[a_1;q] f_j(z)} + \frac{1}{q} \right).$$

Therefore, we have

$$\frac{-\left(\frac{zqD_{q}^{2}\mathcal{H}_{q}(z)}{D_{q}\mathcal{H}_{q}(z)}+1\right)-\frac{c[c+1]q}{q^{C+2}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}-\left(\frac{1}{q^{C+1}[c+1]q}+\frac{c}{q}\right)}{1+\frac{[c+1]q}{q^{C+1}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}}$$

$$=\frac{1-c}{q}-\sum_{j=1}^{n}\left[\gamma_{j}\right]_{q}\left(\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}+\frac{1}{q}\right).$$
(2.3)

From (2.3), we easily get

$$\frac{\left(\frac{z Q Q_{q}^{2} \mathcal{H}_{q}(z)}{D_{q} \mathcal{H}_{q}(z)} + 1\right)}{\sum_{j=1}^{n} [\gamma_{j}]_{q} \left(-\frac{z D_{q} Q_{r,s}[a_{1};q] f_{j}(z)}{Q_{r,s}[a_{1};q] f_{j}(z)}\right) \left(1 + \frac{[c+1]_{q}}{q^{c+1}} \frac{\mathcal{H}_{q}(z)}{z D_{q} \mathcal{H}_{q}(z)}\right) - \frac{[c+1]_{q}}{q^{c+1}} \frac{\mathcal{H}_{q}(z)}{z D_{q} \mathcal{H}_{q}(z)} \left(\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q} - \frac{1}{q}\right) + \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_{q} - \sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}.$$

$$(2.4)$$

Taking real part of both sides of equation (2.4), we get

$$-\Re e\left(\frac{zqD_q^2\mathcal{H}_q(z)}{D_q\mathcal{H}_q(z)}+1\right) =$$
$$\Re e\left[\sum_{j=1}^n [\gamma_j]_q\left(-\frac{zD_q\mathcal{Q}_{r,s}[a_1;q]f_j(z)}{\mathcal{Q}_{r,s}[a_1;q]f_j(z)}\right)\left(1+\frac{[c+1]_q}{q^{c+1}}\frac{\mathcal{H}_q(z)}{zD_q\mathcal{H}_q(z)}\right)\right]$$

95 | The North African Journal of Scientific Publishing (NAJSP)

$$+\frac{[c+1]_q}{q^{c+1}} \left(\sum_{j=1}^n \frac{[\gamma_j]_q}{q} - \frac{1}{q} \right) \Re e\left(\frac{-\mathcal{H}_q(z)}{z D_q \mathcal{H}_q(z)} \right) + \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_q - \sum_{j=1}^n \frac{[\gamma_j]_q}{q}$$

Thus, we have:

$$\begin{split} -\Re e\left(\frac{zqD_{q}^{2}\mathcal{H}_{q}(z)}{D_{q}\mathcal{H}_{q}(z)}+1\right) = \\ & \Re e\left[\sum_{j=1}^{n} [\gamma_{j}]_{q}\left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right)\left(1+\frac{[c+1]_{q}}{q^{c+1}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}\right)\right] \\ & +\frac{[c+1]_{q}}{q^{c+1}}\left(\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}-\frac{1}{q}\right)\Re e\left(-\frac{1}{\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{H}_{q}(z)}}\right)+\frac{1}{q}+\frac{1}{q^{c+1}}[c+1]_{q}-\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}\right) \\ & \leq \left|\sum_{j=1}^{n} [\gamma_{j}]_{q}\left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right)\left(1+\frac{[c+1]_{q}}{q^{c+1}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}\right)\right| \\ & +\frac{[c+1]_{q}}{q^{c+1}}\left(\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}-\frac{1}{q}\right)\frac{\Re e\left(\frac{-zD_{q}\mathcal{H}_{q}(z)}{\mathcal{H}_{q}(z)}\right)}{\left|\frac{zD_{q}\mathcal{H}_{q}(z)}{\mathcal{H}_{q}(z)}\right|^{2}}+\frac{1}{q}+\frac{1}{q^{c+1}}[c+1]_{q}-\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}. \end{split}$$

Let

$$\begin{split} \eta &= \left| \sum_{j=1}^{n} [\gamma_{j}]_{q} \left(-\frac{z D_{q} \mathcal{Q}_{r,s}[a_{1};q] f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q] f_{j}(z)} \right) \left(1 + \frac{[c+1]_{q}}{q^{c+1}} \frac{\mathcal{H}_{q}(z)}{z D_{q} \mathcal{H}_{q}(z)} \right) \right| \\ &+ \frac{[c+1]_{q}}{q^{c+1}} \left(\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q} - \frac{1}{q} \right) \frac{\Re e \left(\frac{-z D_{q} \mathcal{H}_{q}(z)}{\mathcal{H}_{q}(z)} \right)}{\left| \frac{z D_{q} \mathcal{H}_{q}(z)}{\mathcal{H}_{q}(z)} \right|^{2}} + \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_{q} - \sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}. \end{split}$$

Since $\left|\sum_{j=1}^{n} [\gamma_j]_q \left(-\frac{zD_q\mathcal{Q}_{r,s}[a_1;q]f_j(z)}{\mathcal{Q}_{r,s}[a_1;q]f_j(z)}\right) \left(1+\frac{[c+1]_q}{q^{c+1}}\frac{\mathcal{H}_q(z)}{zD_q\mathcal{H}_q(z)}\right)\right| > 0$, and $\mathcal{H}_q(z) \in \Omega_q^*(\alpha)$,

then we have

$$\eta > \frac{[c+1]_q}{q^{c+1}} \left(\sum_{j=1}^n \frac{[\gamma_j]_q}{q} - \frac{1}{q} \right) \frac{\alpha}{\left| \frac{z D_q \mathcal{H}_q(z)}{\mathcal{H}_q(z)} \right|^2} + \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_q - \sum_{j=1}^n \frac{[\gamma_j]_q}{q}$$

 $> \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_q - \sum_{j=1}^n \frac{|Y_j|q}{q},$ Based on the hypothesis (2.1), it follows that $\eta > \frac{1}{q}$. Hence, $\mathcal{H}_q(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$. This concludes the proof.

Setting r = 1, s = 0, and $\alpha_1 = q$ with $q \to 1$ in Theorem 2.1 yields Theorem 2.1 as presented in [16]. Furthermore, by substituting $n = 1, \gamma_1 = \gamma$, and $f_1 = f$ in Theorem 2.1 leads to the following Corollary.

Corollary 2.2 Let $\mathcal{Q}_{r,s}[a_1;q]f(z) \in \Omega$ and $1 < [\gamma]_q < q^{-c}[c+1]_q, c > 0$. If $I_{q,c}^{\gamma}(z) \in \Omega_q^*(\alpha)$ and $zD_q I_{q,c}^{\gamma}(z)/I_{q,c}^{\gamma}(z) \neq 0$ in \mathbb{U} , then $I_{q,c}^{\gamma}(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$. Applying Lemma 1.1, we derive the following theorem.

Theorem 2.3 Let $Q_{r,s}[a_1;q]f_j(z) \in \Omega$ satisfies $(Q_{r,s}[a_1;q]f_j(z))(D_qQ_{r,s}[a_1;q]f_j(z)) \neq 0$ in \mathbb{U} for all $j = 1,2,\ldots,n,1/2 \leq \beta < 1$, and

$$\Re e\left\{\frac{zD_{q}Q_{r,s}[a_{1};q]f_{j}(z)}{Q_{r,s}[a_{1};q]f_{j}(z)}-\frac{zD_{q}^{2}Q_{r,s}[a_{1};q]f_{j}(z)}{D_{q}Q_{r,s}[a_{1};q]f_{j}(z)}\right\}<2-\beta,\ (z\in\mathbb{U}^{*}).$$

If $\gamma_i > 0$ for all $j = 1, 2, \dots, n$, with

$$\sum_{j=1}^{n} [\gamma_j]_q < \frac{(3-2\beta)[c+1]_q}{q^{c-1}(3-q-2\beta)}, \quad (|q| < 1, c > 0),$$
(2.5)

 $\begin{array}{l} \text{then } \mathcal{H}_{q}(z) \in \Omega_{N,q}(\eta), \text{ where } \eta > \frac{1}{q}. \\ \text{Proof. From equation (2.4), we deduce:} \\ & -\left(\frac{zqD_{q}^{2}\mathcal{H}_{q}(z)}{D_{q}\mathcal{H}_{q}(z)} + 1\right) = \left(\frac{[c+1]_{q}}{q^{c+1}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}\right) \left[\sum_{j=1}^{n} [\gamma_{j}]_{q} \left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right) - \left(\sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q} - \frac{1}{q}\right)\right] + \\ \sum_{j=1}^{n} [\gamma_{j}]_{q} \left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right) + \frac{1}{q} + \frac{1}{q^{c+1}}[c+1]_{q} - \sum_{j=1}^{n} \frac{[\gamma_{j}]_{q}}{q}. \end{array}$ (2.6)

Taking real part of both sides of equation (2.6), we get

$$\begin{split} &-\Re e\left(\frac{zqD_{q}^{2}\mathcal{H}_{q}(z)}{D_{q}\mathcal{H}_{q}(z)}+1\right) =\\ &\Re e\left\{\left(\frac{[c+1]_{q}}{q^{c+1}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}\right)\left[\sum_{j=1}^{n}\left[\gamma_{j}\right]_{q}\left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right)-\left(\sum_{j=1}^{n}\frac{[\gamma_{j}]_{q}}{q}-\frac{1}{q}\right)\right]\right\}\\ &+\sum_{j=1}^{n}\left[\gamma_{j}\right]_{q}\Re e\left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right)+\frac{1}{q}+\frac{1}{q^{c+1}}[c+1]_{q}-\sum_{j=1}^{n}\frac{[\gamma_{j}]_{q}}{q}\right]\\ &\leq\left|\left(\frac{[c+1]_{q}}{q^{c+1}}\frac{\mathcal{H}_{q}(z)}{zD_{q}\mathcal{H}_{q}(z)}\right)\left[\sum_{j=1}^{n}\left[\gamma_{j}\right]_{q}\left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right)-\left(\sum_{j=1}^{n}\frac{[\gamma_{j}]_{q}}{q}-\frac{1}{q}\right)\right]\right|\\ &+\sum_{j=1}^{n}\left[\gamma_{j}\right]_{q}\Re e\left(-\frac{zD_{q}\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}{\mathcal{Q}_{r,s}[a_{1};q]f_{j}(z)}\right)+\frac{1}{q}+\frac{1}{q^{c+1}}[c+1]_{q}-\sum_{j=1}^{n}\frac{[\gamma_{j}]_{q}}{q}.\end{split}$$

Let

$$\eta = \left| \left(\frac{[c+1]_q}{q^{c+1}} \frac{\mathcal{H}_q(z)}{zD_q \mathcal{H}_q(z)} \right) \left[\sum_{j=1}^n [\gamma_j]_q \left(-\frac{zD_q \mathcal{Q}_{r,s}[a_1;q]f_j(z)}{\mathcal{Q}_{r,s}[a_1;q]f_j(z)} \right) - \left(\sum_{j=1}^n \frac{[\gamma_j]_q}{q} - \frac{1}{q} \right) \right] \right| \\ + \sum_{j=1}^n [\gamma_j]_q \Re e \left(-\frac{zD_q \mathcal{Q}_{r,s}[a_1;q]f_j(z)}{\mathcal{Q}_{r,s}[a_1;q]f_j(z)} \right) + \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_q - \sum_{j=1}^n \frac{[\gamma_j]_q}{q}.$$
(2.7)

Then, applying Lemma1.1, and since

$$\left| \left(\frac{[c+1]_q}{q^{c+1}} \frac{\mathcal{H}_q(z)}{zD_q \mathcal{H}_q(z)} \right) \left[\sum_{j=1}^n \left[\gamma_j \right]_q \left(-\frac{zD_q \mathcal{Q}_{r,s}[a_1;q]f_j(z)}{\mathcal{Q}_{r,s}[a_1;q]f_j(z)} \right) - \left(\sum_{j=1}^n \frac{[\gamma_j]_q}{q} - \frac{1}{q} \right) \right] \right| > 0,$$

we have:

$$\begin{split} \eta > \sum_{j=1}^{n} \, [\gamma_j]_q \left(\frac{1}{3-2\beta}\right) + \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_q - \sum_{j=1}^{n} \frac{[\gamma_j]_q}{q} = \sum_{j=1}^{n} \, [\gamma_j]_q \left(\frac{2\beta-3+q}{q(3-2\beta)}\right) \\ &+ \frac{1}{q} + \frac{1}{q^{c+1}} [c+1]_q. \end{split}$$

Then, by the hypothesis (2.5), we have $\eta > \frac{1}{q}$. As result $\mathcal{H}_q(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$. Setting r = 1, s = 0, and $\alpha_1 = q$ with $q \to 1$ in Theorem 2.3 yields Theorem 2.3 as presented in [16].

Furthermore, by substituting n = 1, $\gamma_1 = \gamma$, $f_1 = f$ in Theorem 2.3 leads to the following Corollary. **Corollary 2.4** Let $Q_{r,s}[a_1;q]f(z) \in \Omega$ satisfies $(Q_{r,s}[a_1;q]f(z))(D_qQ_{r,s}[a_1;q]f(z)) \neq 0$ in \mathbb{U} , $1/2 \leq \beta < 1$, and

$$\Re e \left\{ \frac{z D_q \mathcal{Q}_{r,s}[a_1;q]f(z)}{\mathcal{Q}_{r,s}[a_1;q]f(z)} - \frac{z D_q^2 \mathcal{Q}_{r,s}[a_1;q]f(z)}{D_q \mathcal{Q}_{r,s}[a_1;q]f(z)} \right\} < 2 - \beta \quad (z \in \mathbb{U}^*).$$

If $[\gamma]_q < \frac{(3-2\beta)[c+1]_q}{q^{c-1}(3-q-2\beta)}, |q| < 1, c > 0$, then $I_{q,c}^{\gamma}(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$.

By putting $\beta = 1/2$ in Corollary 2.4 gives the following result. **Corollary 2.5** Let $Q_{r,s}[a_1;q]f(z) \in \Omega$ satisfies $(Q_{r,s}[a_1;q]f(z))(D_qQ_{r,s}[a_1;q]f(z)) \neq 0$ in \mathbb{U} , and $\Re e \left\{ \frac{zD_qQ_{r,s}[a_1;q]f(z)}{Q_{r,s}[a_1;q]f(z)} - \frac{zD_q^2Q_{r,s}[a_1;q]f(z)}{D_qQ_{r,s}[a_1;q]f(z)} \right\} < 3/2 \quad (z \in \mathbb{U}^*).$

If $[\gamma]_q < \frac{2[c+1]_q}{q^{c-1}(2-q)}$, |q| < 1, c > 0, then $I_{q,c}^{\gamma}(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$. Utilizing equation (1.15) and equation (2.7), the following theorem can be established **Theorem 2.6** Let $Q_{r,s}[a_1;q]f_j(z) \in \Omega$ and $\gamma_j > 0$ for j = 1, 2, ..., n, with

$$\sum_{j=1}^{n} [\gamma_j]_q < \frac{[c+1]_q}{q^c(1-q\alpha)}, \quad (|q| < 1, c > 0, 0 \le \delta < 1).$$
(2.8)

If $Q_{r,s}[a_1;q]f_j(z) \in \Omega_q^*(\alpha)$, then $\mathcal{H}_q(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$. Substituting $n = 1, \gamma_1 = \gamma$, and $f_1 = f$ in Theorem 2.6 leads to the following Corollary. **Corollary 2.7** Let $Q_{r,s}[a_1;q]f(z) \in \Omega$ and $[\gamma]_q < \frac{[c+1]_q}{q^c(1-q\alpha)}, |q| < 1, c > 0$, where $0 \le \delta < 1$. If $Q_{r,s}[a_1;q]f(z) \in \Omega_q^*(\alpha)$, then $I_{q,c}^{\gamma}(z) \in \Omega_{N,q}(\eta)$, where $\eta > \frac{1}{q}$.

References

- 1. F. H. Jackson, On q-definite integrals. Quart. J. Pure Appl. Math. 41, (1910), 193-203.
- 2. Khan, Bilal & Srivastava, Hari & Tahir, Muhammad & Darus, Maslina & Zahoor, Qazi & Khan, Nazar, Applications of a certain q-integral operator to the subclasses of analytic and Bi-univalet functions. AIMS Mathematics. 6 (2020),
- 3. Arif, Muhammad, Miraj Ul Haq, and Jin-Lin Liu. A Subfamily of Univalent Functions Associated with q-Analogue of Noor Integral Operator. Journal of Function Spaces 2018.1 (2018).
- T. Yavuz and Ş. Altınkaya, Notes on some classes of spirallike functions associated with the qintegral operator, Hacettepe Journal of Mathematics and Statistics,vol. 53,no.1, pp.53–61, (2024).
- 5. A. Aral, V. Gupta, and R. P.Agarwal, Applications of q-Calculus in Operator Theory, Springer, NewYork, NY, USA, (2013).
- 6. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Application, Vol. 35, Cambridge University Press, Cambridge, (1990).
- 7. V. Kac and P. Cheung, Quantum calculus, Universitext, Springer-Verlag, New Yourk, (2002).
- 8. T. Ernst, A Comprehensive Treatment of q-Calculus, Springer, Basel, Switzerland, (2012).
- 9. Zhi-Gang Wang, Yong Sun, Zhi-Hua Zhang, Certain classes of meromorphic multivalent functions, Computers Math. Appl. 58(2009), 1408-1417.
- 10. H. Exton, q-Hypergeometric functions and applications, Ellis Horwood Limited, Chichester, (1983).
- 11. A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometricing function, Matematichki Vesnik, vol. 65, no. 4, pp. 454-465, (2013).
- J. Liu and H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Mathematical and Computer Modelling, 39(2004), no. 1, 21-34
- 13. J. Liu and H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, Journal of Mathematical Analysis and Applications, 259(2001), no. 2, 566-581.
- 14. H. Aldweby and M. Darus, Integral operator defined by q-analogue of Liu-Srivastava operator, Stud. Univ. Babes-Bolyai Math., no 4,58(2013), 529-537.
- 15. I. Aldawish and M. Darus, Some properties for an integral operator defined by generalized hypergeometric function, Volume (2014), Article ID 134-910, 8 pages.
- 16. B.A. Frasin, On an integral operator of meromorphic functions, Matematiqki Vesnik, 64(2) (2012), 167-172.
- 17. A. Mohammed, M. Darus, A new integral operator for meromorphic functions, Acta Univ. Apul. 24 (2010), 231-238.
- 18. S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl. 22 (1977), 295-297.
- 19. R.M. Goel, N.S. Sohi, On a class of meromorphic functions, Glasnik Mat. 17 (1981), 19-28.
- 20. M.L. Mogra, T.R. Reddy, O.P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32 (1985), 161-176.
- 21. N.E. Cho, S. Owa, Sufficient conditions for meromorphic starlikeness and close-to-convexity of order α, Intern. J. Math. Math. Sci. 26 (2001), 317-319.