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Abstract:  
The integration of advanced Artificial Intelligence (AI) techniques into Structural Health Monitoring 
(SHM) has transformed the way infrastructure is monitored and maintained. This paper explores 
several cutting-edge developments in the field, with a particular focus on vision-based SHM, which 
leverages AI-driven image recognition and video processing to detect and assess structural damage, 
material degradation, and performance characteristics. Furthermore, Physics-Informed Artificial 
Intelligence (PIAI) emerges as a powerful approach that combines physics-based modeling with data-
driven techniques, ensuring that AI predictions align with fundamental engineering principles. To 
address the "black-box" nature of traditional AI models, Interpretable Artificial Intelligence (XAI) is 
gaining importance, providing insights into how and why AI models make specific predictions, thereby 
increasing trust and adoption in critical SHM applications. The paper also reviews the diverse 
applications of AI in SHM, such as real-time monitoring, damage classification, predictive maintenance, 
and autonomous inspections using drones and robotics. However, several challenges and limitations 
impede widespread implementation, including data quality, model interpretability, computational 
complexity, and system integration. Lastly, future trends and directions are discussed, highlighting the 
need for explainable and hybrid models, the expansion of AI-driven autonomous monitoring systems, 
and the integration of IoT and edge computing technologies. These advancements hold the potential 
to revolutionize the monitoring and management of critical infrastructure, making AI a key enabler for 
future SHM systems. 
 
Keywords: Artificial Intelligence; Structural Health Monitoring; Vision-based SHM; Physics-Informed 
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 الملخص 
لاً كبيرًا في  SHM( المتقدمة في مراقبة الصطططاة الهيكلية  AIيعَُدُّ دمج تقنيات الذكاء الاصطططعناعي   كيفية مراقبة البنية التاتية وصطططيانتها   ( تاوُّ

مد  يسطتعرض ذذا البا  العديد م  التعورات الاديةة في ذذا المجال، م  التركي  بشطكل صاع علا المراقبة البصطرية للصطاة الهيكلية، والتي تعت
هيكلية وتقييم تدذور المواد وصصطاصع  علا تقنيات التعرف علا الصطور ومعالجة الفيديو المدعومة بالذكاء الاصطعناعي للكشطف ع  اارطرار ال

( نهجًا قوياً يجم  بي  النمذجة القاصمة علا الفي ياء والتقنيات المسطتندة  PIAIااداء  علاوةً علا ذلك، يعَُدُّ الذكاء الاصطعناعي المسطتند إلا الفي ياء  
هندسطية ااسطاسطية  وللتعامل م  العبيعة صالصطندوس ااسطودص  إلا البيانات، مما يرطم  أ  تكو  تنباات الذكاء الاصطعناعي متماشطية م  المبادل ال

( أذمية مت ايدة م  صلال تقديم راى اول كيفية ولماذا تتصذ  XAIللنماذج التقليدية للذكاء الاصططعناعي، يكتسططذ الذكاء الاصططعناعي التفسططير   
كمطا يسطططططتعرض الباط  التعبيقطات المتنوعطة للطذكطاء    الارجطة   SHMالنمطاذج القرارات، ممطا يع   الةقطة والاعتمطاد علا ذطذم النمطاذج في تعبيقطات  

، مةل المراقبة في الوقت الفعلي، وتصطنيف اارطرار، والصطيانة التنباية، والتفتيل الذاتي باسطتصدام العاصرات بدو  عيار  SHMالاصطعناعي في  
ة تفسطططططير  والروبوتطات  وم  ذلطك، ذنطاك العطديطد م  التاطديطات والقيود التي تعيي التعبيي الواسططططط  لهطذم التقنيطات، بمطا في ذلطك جودة البيطانطات، وقطابليط
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قيد العمليات الاسطابية، وتكامل اانممة  أصيرًا، يناقل البا  الاتجاذات المسطتقبلية، مسطلعًا الرطوء علا الااجة إلا نماذج تفسطيرية  النماذج، وتع
( والاوسططبة العرفية  تامل ذذم  IoTوذجينة، والتوسطط  في أنممة المراقبة الذاتية المدعومة بالذكاء الاصططعناعي، ودمج تقنيات إنترنت ااشططياء  

  SHMعورات القدرة علا إادا  ةورة في مراقبة وإدارة البنية التاتية الارجة، مما يجعل الذكاء الاصطططعناعي عنصطططرًا أسطططاسطططياً في أنممة  الت
 المستقبلية 

 
المسطتند إلا    ومراقبة الصطاة البنيوية القاصمة علا الراية، والذكاء الاصطعناعي  البنيوية، الذكاء الاصطعناعي، ومراقبة الصطاة    الكلمات المفتاحية:

 الفي ياء، والذكاء الاصعناعي القابل للتفسير، 

1. Introduction  
Civil infrastructure plays a pivotal role in driving economic growth and maintaining a high standard of 
living within any nation. Consequently, ensuring the structural soundness of critical infrastructure 
systems is imperative to support essential economic activities and mitigate the risk of unexpected 
failures, which could result in severe consequences [1]. This underscores the importance of 
continuously monitoring infrastructure integrity, enabling the early detection of structural deficiencies 
caused by environmental factors or loading conditions. Prompt identification allows for timely 
interventions, thereby significantly reducing the costs associated with repairs and rehabilitation [2]. 
Recent advancements in sensor technology have facilitated the development of cost-effective, yet 
highly efficient, solutions for acquiring long-term monitoring data from instrumented structural systems. 
 
In recent years, advancements in information technologies and computing hardware have given rise to 
a transformative computational approach known as artificial intelligence (AI) [3]. AI aims to replicate 
human cognitive abilities, thereby imparting human-like intelligence to machines and computers. Over 
the past two decades, this field has garnered considerable attention within the structural health 
monitoring (SHM) community. AI has significantly advanced the field by enhancing intelligent 
maintenance and condition assessment of civil infrastructure through the autonomous, precise, and 
resilient processing of field monitoring data [4]. 
 
In the past two decades, the promising potential of smart autonomous structural health monitoring 
(SHM) has attracted a growing influx of new researchers. However, the vast body of available literature 
can be overwhelming, leading many newcomers to rely on recently published review papers to 
familiarize themselves with current research trends and identify unresolved challenges. Despite the 
utility of these reviews, most existing papers are focused on narrow, specific topics, failing to offer a 
comprehensive view of the broader evolution of the field. Additionally, there is a noticeable lack of clarity 
regarding the historical context of how the persistent efforts of various researchers have steadily 
expanded the knowledge base over time. This study seeks to address this gap by offering an in-depth 
analysis of the progression of research in this area.  
 
2. Vision-based Structural Health Monitoring 
The recent accessibility of affordable vision sensors has spurred a significant increase in research 
dedicated to vision-based Structural Health Monitoring (SHM). These sensors are well-suited for 
integration with mobile robotic platforms, such as Unmanned Aerial Systems (UAS), which drastically 
streamlines the process of data collection and facilitates the rapid accumulation of large datasets. 
Nevertheless, the efficient and accurate analysis of these substantial datasets poses a considerable 
challenge, leading researchers to seek AI-powered solutions to automate and optimize the data 
processing tasks associated with SHM [5]. 
 
The vision-based condition assessment of structural systems can be carried out at three distinct levels 
such as defect classification, defect detection, and defect segmentation as illustrated in Figure 2. Defect 
classification involves identifying the type or category of defect present in an inspection image. While 
this level of assessment provides valuable information regarding the nature of the defect, it does not 
offer any insights into the defect's specific location within the image [6]. For more comprehensive 
assessments, further levels of detection and segmentation are required to pinpoint and quantify the 
defect with greater precision. 
 
Defect detection, on the other hand, entails both the classification and localization of defects within a 
given input image. This category of algorithms is capable of handling scenarios in which a single image 
contains multiple defects, potentially from different or similar categories. However, at this stage, 
defective areas in an image are typically marked by rectangular bounding boxes, which often fail to 
accurately capture the precise boundaries of the defects, limiting their utility for defect quantification. A 
more refined level of localization is achieved through defect segmentation, where each pixel in the 
image is classified according to the defect's type or severity. This method enables more precise 
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delineation of the defect boundaries, thereby facilitating more accurate defect quantification—a critical 
requirement for inspectors and structural engineers. 
 

 

 

 
Figure 1: Three stages of vision-based monitoring. 

 
3. Detection 
The detection task can alternatively be formulated as a patch-based classification, a method explored 
in numerous studies mentioned in the previous subsection. In this approach, an image is divided into 
several patches, either overlapping or non-overlapping, with a predefined size. Each patch is then 
classified independently, resulting in a coarse localization of defects. However, this method has 
significant limitations, as it does not account for the potential variability in defect sizes. Additionally, 
because the classifier operates on individual patches in isolation, it overlooks the global context of the 
image, which is crucial for precise defect detection []. To represent the detection task as a patch-based 
classification problem, the equation can be formulated as follows: 
 

𝑓(𝑥𝑖) =  𝑦𝑖 ,    𝑥𝑖 ∈  X,          𝑦𝑖 ∈  Y                                        (1) 
 
Where, 𝑓 is the classification function (typically a machine learning model). 𝑥𝑖 represents the input patch 

from the set of all patches X. 𝑦𝑖 represents the predicted class label for the patch 𝑥𝑖, where  𝑦𝑖 ∈  Y, the 
set of possible class labels (e.g., defect or no defect). In the context of detection, the task is to classify 
each patch 𝑥𝑖 correctly into its corresponding category 𝑦𝑖, turning the detection problem into a series of 
patch-based classifications. 
 
Alternatively, the detection task can be reframed as a regression problem, where the bounding box 
coordinates and their associated class probabilities are regressed directly from the entire input image. 
A prominent example of this modeling approach is the Faster R-CNN, which has shown effectiveness 
in object detection by leveraging this regression-based framework for more accurate localization and 
classification of defects. In the Faster R-CNN framework, an input image is initially processed through 
a series of convolutional layers as shown Figure 2.  
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Figure 2: Architecture of Faster R-CNN for determining faults. 
 
These layers extract feature maps that capture various levels of visual patterns and details. The feature 
map produced by the final convolutional layer is then passed to a Region Proposal Network (RPN), 
which identifies potential regions of interest (ROIs) in the image where defects or objects may be 
present. Once the regions of interest are proposed, they are classified, and the corresponding bounding 
boxes are refined using a dedicated CNN module [8]. This process not only improves the accuracy of 
classification but also allows for precise localization of defects within the image by adjusting the 
bounding boxes. 
 
4. Assessment of material and degradation characteristics 
Concrete and steel, as the most extensively utilized construction materials in civil engineering, have 
become focal points for estimating a variety of structural properties and analyzing deterioration 
phenomena. Over the past two decades, these efforts have increasingly incorporated advanced 
machine learning techniques. The development of mathematical models that accurately capture 
material behavior is often impeded by the inherent complexity of the processes and the multitude of 
influencing parameters. Moreover, such models are frequently constrained by numerous assumptions 
and simplifications inherent in modeling, leading to uncertainties in their predictive capabilities. Over 
the years, machine learning (ML)-based models have emerged as a promising alternative in this context 
[9]. By uncovering and learning complex patterns embedded within empirical data, they are capable of 
producing highly accurate results. Furthermore, they significantly reduce the time and cost associated 
with material testing of concrete and steel specimens. Although these techniques have been applied to 
estimate a wide range of parameters, this study identifies five key focus areas that have garnered the 
most attention from the research community. 
 
5. Physics-Informed Artificial Intelligence 
Physics-based modeling has traditionally served as the classical approach for analyzing structural 
behavior. However, the applicability of this method is largely confined to simple structures operating 
within controlled environments. Extending it to real-world structures—replete with complexities and 
uncertainties in material behavior, boundary conditions, and other factors—constitutes a formidable 
challenge. In recent years, the increased accessibility of data, facilitated by the advent of reliable and 
low-cost sensors, has transformed this landscape [10]. Furthermore, advancements in information 
technology and computational capabilities have led to the development of numerous data-driven 
algorithms capable of autonomously processing the acquired sensory data. 
 
In the context of Physics-Informed Artificial Intelligence, it can integrate physical laws into the learning 
process by embedding them within the data-driven models. The following equation (2) demonstrates 
this hybrid approach, where both data-driven and physics-based models contribute to the overall 
prediction: 
 

𝑦 ̂ = 𝑓𝑀𝐿(𝑥) + λ . ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝑥)                                       (2) 

 
Where, 𝑦 ̂ represents the predicted structural behavior. 𝑓𝑀𝐿(𝑥) is the data-driven model, typically a 

machine learning (ML) algorithm, which processes sensory data 𝑥. ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠(𝑥) is the physics-based loss 
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term that enforces known physical laws (e.g., equilibrium equations, constitutive laws, or boundary 
conditions). λ is a regularization parameter that balances the influence of the physics-based model and 
the data-driven component. This equation blends the strengths of data-driven methods with physics-
informed constraints, enhancing the model's ability to generalize to real-world, complex structural 
systems. 
 
Machine learning (ML)-based approaches constitute a critical subset of this extensive collection of data-
driven techniques, yet they typically require substantial amounts of data to train models effectively. This 
necessity represents a significant bottleneck that restricts the widespread application of these methods, 
particularly in situations where high-quality labeled data are scarce. In such contexts, physics-informed 
ML models become invaluable by integrating domain knowledge into the learning process, thereby 
partially mitigating the dependence on large datasets [11]. This is a relatively nascent research area 
that is gaining increasing traction within the scientific community. A specific category of problems where 
domain expertise can be leveraged to guide the learning process involves cases where the structural 
behavior can be mathematically represented by governing differential equations. In these instances, a 
physics-based loss function is added to the existing data-driven loss function, serving as a regulatory 
mechanism to steer the training process toward an optimal solution. 
 
6. Interpretable Artificial Intelligence 
The widespread proliferation of Artificial Intelligence (AI) and Machine Learning (ML) techniques has 
significantly accelerated over the years, leading to an abundance of research focused on developing 
automated solutions for various Structural Health Monitoring (SHM) challenges. However, the practical 
adoption of these technologies has regrettably not paralleled the intensity of research and development 
efforts [12]. This disparity can be attributed to the intrinsic opacity and "black-box" characteristics 
inherent in these automation-driven technologies. Consequently, recent years have witnessed a 
renewed emphasis on the explain ability and interpretability of ML algorithms. This shift aims to bolster 
confidence among engineers, practitioners, and stakeholders by enhancing transparency in the 
decision-making processes. One of the most widely employed frameworks in explainable AI is the 
SHapley Additive Explanations (SHAP) method, rooted in game-theoretic concepts to interpret the 
predictions of ML models. SHAP also enables the quantification of individual feature contributions by 
calculating an importance score for each feature [13]. 
 
7. Applications of AI in Structural Health Monitoring (SHM) 
The integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) enables a range of 
advanced applications that enhance the efficiency, accuracy, and scalability of monitoring systems 
[14,16]. Key applications include: 

i. Damage Detection and Classification: AI models, especially machine learning and deep 
learning algorithms, can detect and classify structural damage (e.g., cracks, corrosion, fatigue) 
more accurately than traditional methods. AI can process large datasets from sensors to identify 
early signs of structural degradation. 

ii. Real-Time Monitoring: AI-driven systems enable real-time or near-real-time monitoring by 
analyzing continuous data streams from sensors. This facilitates rapid detection of anomalies 
and allows for immediate corrective actions, which is critical for the safety of large infrastructure 
such as bridges, buildings, and pipelines. 

iii. Predictive Maintenance: AI algorithms, particularly time-series models like Recurrent Neural 
Networks (RNNs), predict future structural health based on historical data. This allows for 
proactive maintenance, reducing the risk of catastrophic failures and optimizing maintenance 
schedules. 

iv. Autonomous Inspection Systems: AI-powered drones, robots, and autonomous systems can 
inspect hard-to-reach or dangerous areas of structures (e.g., tall buildings, wind turbines, or 
offshore platforms) autonomously, reducing the need for manual inspections and improving 
safety. 

v. Sensor Data Fusion: AI can combine data from multiple types of sensors (e.g., vibration, 
strain, temperature) to provide a holistic view of structural health. This multi-sensor data fusion 
improves the accuracy of damage detection and condition assessment. 

vi. Performance Monitoring of Complex Structures: For large and complex structures (e.g., 
aircraft, bridges), AI enhances the ability to monitor performance under varying operational 
conditions and environmental factors, improving the overall reliability of SHM systems. 

AI in SHM offers substantial benefits in terms of automation, precision, and predictive capabilities, 
revolutionizing how structures are monitored and maintained. 
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8. Challenges and Limitations 
The integration of Artificial Intelligence (AI) into Structural Health Monitoring (SHM) faces several key 
challenges: 

i. Data Quality and Availability: AI models require large, high-quality datasets for accurate 
predictions. However, SHM often suffers from insufficient, incomplete, noisy, or imbalanced 
data, making it difficult to train effective models. Labeling data is also labor-intensive and 
requires expert input. 

ii. Interpretability and Transparency: Many AI models, particularly deep learning networks, 
are "black boxes," meaning their decision-making processes are not easily understandable. 
This lack of explainability raises concerns about trust, adoption, and regulatory approval in 
safety-critical SHM applications. 

iii. Computational Complexity: AI models, especially deep learning algorithms, demand 
significant computational power and memory. Training and deploying these models for real-
time monitoring can be resource-intensive and may not always be feasible in environments 
with limited processing capabilities. 

iv. Integration with Existing Systems: AI must be integrated into legacy SHM systems, which 
can be challenging due to compatibility issues. The cost of retrofitting infrastructure with new 
sensors and systems can be prohibitive, and operational challenges include maintaining 
model accuracy over time. 

v. Ethical and Security Concerns: AI systems in SHM raise data privacy concerns and can be 
vulnerable to cybersecurity threats. Additionally, biases in the training data may lead to 
inaccurate or unfair predictions, affecting the reliability of AI-driven SHM. 

Addressing these challenges will be essential for advancing the effective and widespread use of AI in 
SHM applications. 
 
9. Future Trends and Directions 
The integration of Artificial Intelligence (AI) in Structural Health Monitoring (SHM) has significantly 
advanced in recent years, yet numerous emerging trends and future directions offer exciting possibilities 
for further innovation and refinement. In this section, we explore the key developments that are shaping 
the future of AI in SHM, focusing on emerging technologies, interdisciplinary approaches, and the critical 
challenges that lie ahead. 

i. Explainable AI (XAI) in SHM 
One of the most prominent future trends in AI integration across various fields, including SHM, is the 

demand for Explainable Artificial Intelligence (XAI). As AI models grow in complexity, their decision-

making processes often become opaque or "black-box" in nature, making it difficult for engineers, 

practitioners, and stakeholders to trust or interpret the model’s outcomes, especially in safety-critical 

applications such as SHM. 

ii. Hybrid Models: Combining Physics-Based and AI-Driven Approaches 
The development of hybrid models is one of the most promising avenues in the future of SHM. These 

models combine traditional physics-based approaches with data-driven AI techniques, leveraging the 

strengths of both to address the limitations inherent in each method. 

iii. AI-Driven Autonomous Monitoring Systems 
The future of SHM lies in autonomous monitoring systems that are capable of real-time, continuous 

assessment without human intervention. AI will play a central role in enabling fully autonomous SHM, 

combining advancements in sensing technologies, robotics, and machine learning. 

iv. Edge Computing and IoT Integration 
The integration of Internet of Things (IoT) devices and Edge Computing into SHM systems is a 
transformative trend that will enhance the speed and efficiency of AI-based monitoring. 

v. Advanced Predictive Maintenance and Lifespan Prediction 
Another significant future direction is the development of predictive maintenance systems powered by 
AI, which will not only detect current structural issues but also forecast future degradation and failure 
modes.  
 
The future of integrating AI in SHM holds immense potential, with explainable AI, hybrid modeling, 
autonomous systems, edge computing, and predictive maintenance at the forefront of innovation. 
These trends will drive the development of more robust, efficient, and scalable SHM systems capable 
of adapting to the complexities of real-world structures. As AI continues to evolve, it will become a 
fundamental pillar of SHM, transforming the way we monitor, maintain, and extend the life of critical 
infrastructure. 
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10. Conclusion 
The integration of AI in Structural Health Monitoring (SHM) has transformed the field, particularly 
through vision-based SHM, which enables remote detection of structural damage and material 
degradation. Physics-Informed AI (PIAI) combines data-driven models with physical laws, enhancing 
prediction accuracy, while Interpretable AI (XAI) ensures transparency in AI decisions, building trust 
among engineers and stakeholders. Despite its promise, challenges such as data quality, computational 
complexity, and system integration still limit widespread adoption. Future trends, including hybrid 
models, autonomous monitoring systems, and IoT integration, offer exciting potential for fully scalable, 
real-time SHM solutions. These advancements will revolutionize infrastructure maintenance, ensuring 
improved safety, efficiency, and longevity of critical assets. 
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